精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的一个焦点为,四条直线所围成的区域面积为.

1)求的方程;

2)设过的直线交于不同的两点,设弦的中点为,且为原点),求直线的方程.

【答案】12

【解析】

1)由题意,结合椭圆的性质可得的方程组,解方程组即可求得椭圆的标准方程.

2)因为直线过定点,设出直线方程,并联立椭圆方程.化简后利用判别式求得斜率的取值范围.由三角形几何性质可知,结合平面向量数量积定义及韦达定理求得斜率的方程,解方程即可求得斜率,进而可得直线的方程.

1)依题意得,解得

椭圆的方程为

2)易知直线的斜率存在,并设直线方程为,

联立椭圆,,化简得,

,

,

,

由三角形几何性质可知

,

,

代入上式得

化简得,所以

故所求的直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)在曲线上任取一点,连接,在射线上取,使,点轨迹的极坐标方程;

2)在曲线上任取一点,在曲线上任取一点,的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=sinωxcosωx)(ω0|φ|)的图象与直线y2的两个相邻的交点之间的距离为π,且fx+f(﹣x)=0,若gx)=sinωx),则(   )

A.gx)在(0)上单调递增B.gx)在 0)上单调递减

C.gx)在()上单调递增D.gx)在()上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )

A. 时,B. 时,

C. 时,D. 时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数为(

为真为真的充分不必要条件;

②若数据的平均数为1,则的平均数为2

③在区间上随机取一个数,则事件发生的概率为

④已知随机变量服从正态分布,且,则.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足:①定义为;②.

1)求的解析式;

2)若;均有成立,求的取值范围;

3)设,试求方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在常数,使得对任意,均有,则称为有界集合,同时称为集合的上界.

(1)设,试判断是否为有界集合,并说明理由;

(2)已知常数,若函数为有界集合,求集合的上界最小值.

(3)已知函数,记,求使得集合为有界集合时的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推行“高中新课程改革”,某数学老师分别用“传统教学”和“新课程”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果.期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于120分者为“成绩优良”.

分数

甲班频数

7

5

4

3

1

乙班频数

1

2

5

5

7

1)从以上统计数据填写下面列联表,并判断能否犯错误的频率不超过0.01的前提下认为“成绩优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

P

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:,其中.临界值表如上表:

2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

同步练习册答案