精英家教网 > 高中数学 > 题目详情
设A(x1,y1)、B(x2,y2)、C(x3,y3)是抛物线y=x2上的三个动点,其中x3>x2≥0,△ABC是以B为直角顶点的等腰直角三角形.
(1)求证:直线BC的斜率等于x2+x3,也等于
x2-x1x3-x2

(2)求A、C两点之间距离的最小值.
分析:(1)设出直线BC的斜率,把点B,C代入抛物线方程,求得横坐标和纵坐标的关系代入斜率公式中,判断出k>0,同时根据AB⊥BC则可表示出AB的斜率,然后根据弦长公式表示出AB和BC的长,根据题意使二者相等,整理出k的表达式,题设得证.
(2)x3=k-x2,x1=-
1
k1
-x2
,代入(1)中k的表达式,依据x2的范围判断出k的范围,进而利用弦长公式,表示出|AC|,进而利用均值不等式求得其最小值.
解答:解:
(1)证明设直线BC的斜率为k,
∵y2=x22,y3=x32,x3>x2≥0,
k=
y3-y2
x3-x2
=
x32-x22
x3-x2
=x3+x2
>0,
又∵AB⊥BC,∴直线AB的斜率为-
1
k1
=x1+x2
<0,
∴x1<-x2<0,由|AB|=|BC|,得
1+(-
1
k
)
2
|x2-x1|=
1+k2
|x2-x3|,
整理,得:k2=(
x2-x1
x3-x2
)2
,而x3>x2≥0>x1
且k>0,∴k=
x2-x1
x3-x2


(2)将x3=k-x2,x1=-
1
k1
-x2
,代入k=
x2-x1
x3-x2
中,
整理,得x2=
k3-1
2k(k+1)

∵x2≥0,k>0,∴k≥1,
∵|AC|=
2
|BC|=
2
1+k2
|x3-x2|
=
2
1+k2
(k-
k3-1
k(k+1)

=
2(1+k2)
1+k2
k(k+1)
k2+1+2k
2k
k(k+1)
=2

∴当且仅当k=1时,|AC|的最小值为2.
点评:本题主要考查了抛物线的应用,斜率公式及弦长公式的综合应用.考查了学生运算能力,推理能力和综合运用所学知识的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.
(Ⅰ)设A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范围;
(Ⅱ)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
上的两点,已知O为坐标原点,椭圆的离心率e=
3
2
,短轴长为2,且
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
)
,若
m
n
=0

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
OA
+
OB
),已知点M的横坐标为
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求点M的纵坐标值;
(2)求s2,s3,s4及Sn
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.

查看答案和解析>>

同步练习册答案