精英家教网 > 高中数学 > 题目详情
17.已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn-1+kan=tan2-1,n≥2,n∈N*(其中k,t为常数).
(1)若k=$\frac{1}{2}$,t=$\frac{1}{4}$,数列{an}是等差数列,求a1的值;
(2)若数列{an}是等比数列,求证:k<t.

分析 (1)设等差数列{an}的公差为d,由k=$\frac{1}{2}$,t=$\frac{1}{4}$,可得${S}_{n-1}+\frac{1}{2}{a}_{n}=\frac{1}{4}{a}_{n}^{2}-1$(n≥2),分别令n=2,n=3,利用等差数列的性质即可得出.
(2)令公比为q>0,则an+1=anq,利用递推关系可得1=(q-1)[tan(q+1)-k],易知q≠1,从而可得t=0,从而证明.

解答 (1)解:设等差数列{an}的公差为d,
∵k=$\frac{1}{2}$,t=$\frac{1}{4}$,∴${S}_{n-1}+\frac{1}{2}{a}_{n}=\frac{1}{4}{a}_{n}^{2}-1$(n≥2),
令n=2,则${a}_{1}+\frac{1}{2}{a}_{2}$=$\frac{1}{4}{a}_{2}^{2}-1$,令n=3,则a1+${a}_{2}+\frac{1}{2}{a}_{3}$=$\frac{1}{4}{a}_{3}^{2}-1$,
两式相减可得:$\frac{1}{2}({a}_{2}+{a}_{3})$=$\frac{1}{4}({a}_{3}+{a}_{2})({a}_{3}-{a}_{2})$,∵an>0,∴a3-a2=2=d.
由${a}_{1}+\frac{1}{2}{a}_{2}$=$\frac{1}{4}{a}_{2}^{2}-1$,d=2,化为${a}_{1}^{2}-2{a}_{1}$-4=0,a1>0.
解得a1=1+$\sqrt{5}$.
(2)证明:∵Sn-1+kan=tan2-1,n≥2,n∈N*,Sn+kan+1=$t{a}_{n+1}^{2}$-1,
∴an+kan+1-kan=$t{a}_{n+1}^{2}$-$t{a}_{n}^{2}$,
∴an=(an+1-an)[t(an+1+an)-k],
令公比为q>0,则an+1=anq,
∴(q-1)k+1=tan(q2-1),
∴1=(q-1)[tan(q+1)-k];
∵对任意n≥2,n∈N*,1=(q-1)[tan(q+1)-k]成立;
∴q≠1,∴an不是一个常数;
∴t=0,
∴Sn-1+kan=-1,
∴k<0,
故k<t.

点评 本题考查了等差数列与递推数列的通项公式及其性质、递推关系的应用、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.作出下列函数一个周期的图象,并指出振幅、周期和初相.
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),A,B是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PA、PB的斜率分别为k1、k2,若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,则|k1•k2|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A 为椭圆上一点,E,F 分别为椭圆的左右焦点,∠EAF=90°,设AE 的延长线交椭圆于B,又|AB|=|AF|,则椭圆的离心率e为(  )
A.$\sqrt{6}$-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面内,复数$\frac{-2-3i}{i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数y=x2与y=$(\frac{1}{2})^{x-2}$的图象交点为(x0,y0),则x0所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若方程|3x-1|=k有两个不同解,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)用辗转相除法求840与1764的最大公约数.
(2)用更相减损术求561与255的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.各项为正数的数列{an} 的前n项和为Sn,且满足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N+).
(Ⅰ)求an
(Ⅱ)设函数f(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{f(\frac{n}{2}),n为偶数}\end{array}\right.$,Cn=f(2n+4)(n∈N+),求数列{Cn}的前n项和Tn..

查看答案和解析>>

同步练习册答案