精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}前n项和为Sn , 首项为a1 , 且 ,an , Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a3n+1)×(log2a3n+4),求证: + + +…+

【答案】
(1)解:∵ ,an,Sn成等差数列,∴2an=

当n=1时,2a1= ,解得a1=

当n≥2时,2an﹣2an1= =an,化为:an=2a.

∴数列{an}是等比数列,首项为 ,公比为2.∴an= =2n2


(2)证明:bn=(log2a3n+1)×(log2a3n+4)= log2(3n+2)=(3n﹣1)(3n﹣2),

= =

+ + +…+ = +…+ =


【解析】(1)由 ,an , Sn成等差数列,可得2an= ,当n=1时,2a1= ,解得a1 . 当n≥2时,2an﹣2an1=an , 化为:an=2a.利用等比数列的通项公式即可得出.(2)bnspan>= log2(3n+2)=(3n﹣1)(3n﹣2),可得 = = .利用“裂项求和”方法、数列的单调性即可证明.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.
(1)求角C的值;
(2)若a+b=4,当c取最小值时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0,a≠1)在区间[﹣1,1]上的最大值与最小值的差是1,则实数a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( + )x3(a>0且a≠1).
(1)求函数f(x)的定义域;
(2)讨论函数f(x)的奇偶性;
(3)求a的取值范围,使f(x)>0在定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为R,若存在常数M>0,使得|f(x)|≤M|x|对一切的实数x都成立,则称f(x)为“倍约束函数”.现给出下列函数: ①f(x)=2x,
②f(x)=x2+1,
③f(x)=sinx+cosx,
④f(x)=
⑤f(x)是定义在实数集上的奇函数,且对一切的x1 , x2均有|f(x1)﹣f(x2)|≤2|x1﹣x2|.
其中是“倍约束函数”的有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程x2+2mx+2m+1=0(m∈R).
(1)若方程有两实根,其中一根在区间(﹣1,1)内,另一根在区间(1,2)内,求m的取值范围;
(2)若方程两实根均在区间(﹣1,2)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)(x>0)的导函数为f′(x),若xf′(x)+f(x)=ex , 且f(1)=e,则(
A.f(x)的最小值为e??
B.f(x)的最大值为e
C.f(x)的最小值为 ??
D.f(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的值域是[0,+∞),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,焦点F1 , F2在坐标轴上,离心率为 ,且过点(4,﹣ ),点M(3,m)在双曲线上.
(1)求双曲线方程;
(2)求证:MF1⊥MF2
(3)求△F1MF2的面积.

查看答案和解析>>

同步练习册答案