精英家教网 > 高中数学 > 题目详情

【题目】已知圆,其圆心在抛物线上,圆过原点且与抛物线的准线相切.

1)求抛物线的方程;

2)若过抛物线的焦点的直线交抛物线两点,过点且垂直于直线的直线交抛物线的准线于点.求的最小值.

【答案】1;(2

【解析】

1)由题意可知:,求解可得抛物线方程;

2)分两种情况求解:①当动弦所在的直线斜率不存在时,易得;②当动弦所在的直线斜率存在时,设所在直线方程为,且,联立,由弦长公式及韦达定理表示出;又所在的直线方程为,可求得点,计算求其范围即可.

1)由题意可知:

解得,所以抛物线的标准方程为.

2)①当动弦所在的直线斜率不存在时,易得

②当动弦所在的直线斜率存在时,易知的斜率不为0

所在直线方程为,且

联立方程组,消去

,且

所在的直线方程为

联立方程组,求得点,∴

;综上所述,的最小值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程及直线的普通方程;

2)设直线与曲线交于两点(点在点左边)与直线交于点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等边三角形的边长为边的中点,沿折成直二面角,则三棱锥的外接球的表面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)[选修4-5:不等式选讲]

已知函数=|x-a|+(a≠0)

(1)若不等式-≤1恒成立,求实数m的最大值;

(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.2015年以来,“一带一路”建设成果显著.如图是20152019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )

A.这五年,出口总额之和比进口总额之和

B.这五年,2015年出口额最少

C.这五年,2019年进口增速最快

D.这五年,出口增速前四年逐年下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,求的极值;

(2)证明:.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线与椭圆相交所得的线段长为3,椭圆的左、右焦点分别为,动点在椭圆.

1)求椭圆的方程;

2)设直线的另一个交点为,过分别作直线的垂线,垂足为轴的交点为.的面积成等差数列,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,已知.是线段的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

同步练习册答案