精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2x,g(x)是R上的奇函数,且当x∈(-∞,0]时,g(x)+f(x)=x2
(1)求函数g(x)在R上的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
分析:(1)根据x∈(-∞,0]时,g(x)=2x,g(x)是R上的奇函数,可求得函数g(x)在R上的解析式;
(2)由g(x)≥f(x)-|x-1|,可得|x-1|≥x2-4x,根据绝对值不等式(|x|≥a型)可得:x2-5x+1≤0,x2-3x-1≤0,从而可求得不等式g(x)≥f(x)-|x-1|的解集;
(3)h(x)=-λx2+(2λ+2)x+1,对λ分类讨论,结合函数的单调性可求得λ的取值范围.
解答:解:(1)设x∈[0,+∞),则-x∈(-∞,0]
∵当x∈(-∞,0]时,g(x)+f(x)=x2∴当x∈(-∞,0]时,g(x)=2x
∴g(-x)=-2x∵g(x)是R上的奇函数∴g(x)=-g(-x)=2x,x∈[0,+∞)
∴函数g(x)在R上的解析式,g(x)=2x
(2)由g(x)≥f(x)-|x-1|,可得|x-1|≥x2-4x∴x2-5x+1≤0,x2-3x-1≤0
5-
21
2
≤x≤
5+
21
2
3-
13
2
≤x≤
3+
13
2

因此,原不等式的解集为[
3-
13
2
5+
21
2
]

(3)h(x)=-λx2+(2λ+2)x+1
①λ=0时,h(x)=2x+1在[-1,1]上是增函数∴λ=0
②当λ≠0,对称轴方程为x=
λ+1
λ

当λ<0时,
λ+1
λ
≤-1
,解得-
1
2
≤λ<0

当λ>0时,
λ+1
λ
≥1
,解得λ>0
综上所述,-
1
2
≤λ
点评:本题考查函数奇偶性与单调性的性质,着重考查学生分类讨论思想与转化思想,灵活运用二次函数的性质的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案