精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知点A1,A2,…,An,…B1,B2,…,Bn,…均在抛物线x=y2上,线段AnBnx轴的交点为Hn.将△OA1B1,△H1A2B2,…,△HnAn+1Bn+1,…的面积分别记为S1,S2,…,Sn+1,….已知上述三角形均为等腰直角三角形,且它们的顶角分别为O,H1,…,Hn,….

1)求S1S2的值;

2)证明:nsnn2.

【答案】1,.2)答案见解析

【解析】

1)由OA1:y=xx=y2联立可得S1=1, 由H1A2:y=x1x=y2联立可得S2=;(2)设A1,A2,…,An,…的纵坐标为x1,x2,…,xn,…,求得xn+1,再利用数学归纳法证明nSnn2.

1)由OA1:y=xx=y2联立可得x=01,故A1(1,1),即S1=1,

H1A2:y=x1x=y2联立可得x,

A2(,),

因此S2=()2;

2)设A1,A2,…,An,…的纵坐标为x1,x2,…,xn,…,

可得Sn=xn2,且HnAn+1:y=x(xn+xn1+…+x1),

x=y2联立可得xn+1=xn+12(xn+xn1+…+x1),即=xn+12,

=xn+12,与=xn2,相减可得xn+1=xn+12xn2,

进而解得xn+1,

下面运用数学归纳法证明nSnn2.

x=1,2时,S1=1,S2=,符合题意;

n=k时,假设xkk成立,

一方面,xk+1

0,即有xk+1;

另一方面,xk+1(k+1)(k+1)

(k)0,即有xk+1k+1.

可得n=k+1时,xk+1k+1.

因此xnn,即nSnn2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:其中所有假命题的序号是_______.

①命题的否定是

②将函数的图像向右平移个单位,得到函数的图像;

③幂函数上是减函数,则实数

④函数有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

1求椭圆的标准方程;

2若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点在一象限,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令

1)当时,求函数的单调区间;

2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂打算设计一种容积为2m3的密闭容器用于贮藏原料,容器的形状是如图所示的直四棱柱,其底面是边长为x米的正方形,假设该容器的底面及侧壁的厚度均可忽略不计.

1)请你确定x的值,使得该容器的外表面积最小;

2)若该容器全部由某种每平方米价格为100元的材料做成,且制作该容器仅需将购置的材料做成符合需要的矩形,这些矩形即是直四棱柱形容器的上下底面和侧面(假设这一过程中产生的费用和材料损耗可忽略不计),再将这些上下底面和侧面的边缘进行焊接即可做成该容器,焊接费用是每米500元,试确定x的值,使得生产每个该种容器的成本(即原料购置成本+焊接费用)最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数有两个零点,求实数a的取值范围

2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型歌手选秀活动,过程分为初赛、复赛和决赛.经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训.下图是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图.赛制规定:参加复赛的40名选手中,获得的支持票数不低于85票的可进入决赛,其中票数不低于95票的选手在决赛时拥有优先挑战权”.

1)从进入决赛的选手中随机抽出2名,X表示其中拥有优先挑战权的人数,求X的分布列和数学期望;

2)请填写下面的列联表,并判断能否在犯错误的概率不超过0.025的前提下认为进入决赛与选择的导师有关?

甲班

乙班

合计

进入决赛

未进入决赛

合计

下面的临界值表仅供参考:

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题;命题函数在区间上有零点.

1)当时,若为真命题,求实数的取值范围;

2)若命题是命题的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为更好进行校纪、校风管理,争创文明学校,由志愿者组成小红帽监督岗,对全校的不文明行为进行监督管理,对有不文明行为者进行批评教育,并作详细的登记,以便跟踪调查下表是个周内不文明行为人次统计数据:

周次

不文明行为人次

1)请利用所给数据求不文明人次与周次之间的回归直线方程,并预测该学校第周的不文明人次;

2)从第周到第周记录得知,高一年级有位同学,高二年级有位同学已经有次不文明行为.学校德育处决定先从这人中任选人进行重点教育,求抽到的两人恰好来自同一年级的概率

参考公式:

查看答案和解析>>

同步练习册答案