精英家教网 > 高中数学 > 题目详情

【题目】在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生23人,其平均数和方差分别为170.612.59,抽取了女生27人,其平均数和方差分别为160.638.62.你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?

【答案】能,估计为51.4862

【解析】

引入记号,把男生样本记为,其平均数记为,方差记为;把女生样本记为,其平均数记为,方差记为;把总样本数据的平均数记为,方差记为.

根据方差的定义,总样本方差为,为了与联系,变形为,计算后可得.这样变形后可计算出.这也就是估计值.

把男生样本记为,其平均数记为,方差记为;把女生样本记为,其平均数记为,方差记为;把总样本数据的平均数记为,方差记为.

根据方差的定义,总样本方差为

,可得

.

同理可得

.

因此,

.

,根据按比例分配分层随机抽样总样本平均数与各层样本平均数的关系,可得总样本平均数为

.

把已知的男生、女生样本平均数和方差的取值代入①,可得

.

我们可以计算出总样本的方差为51.4862,并据此估计高一年级学生身高的总体方差为51.4862.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等腰梯形ABCD中,ABDCAB2BC1,∠ABC60°.动点EF分别在线段BCDC上,且

1)当λ,求||

2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过且斜率为的直线交抛物线于两点.若线段的垂直平分线与轴交于点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若对任意,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上的减函数;

(2)若为R上的偶函数,且在内是减函数, ,则解集为

(3)若为R上的奇函数,则也是R上的奇函数;

(4)为常数,若对任意的,都有关于对称.

其中所有正确的结论序号为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A33),B5–1)到直线l的距离相等,且直线l过点P01),则直线l的方程(

A.y=1B.2x+y–1=0

C.2x+y–1=02x+y+1=0D.y=12x+y–1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求证:

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在试验E“连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A表示随机事件“第一次掷出的点数为1”,事件表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j,事件B表示随机事件“2次掷出的点数之和为6”,事件C表示随机事件“第二次掷出的点数比第一次的大3”,

1)试用样本点表示事件

2)试判断事件ABACBC是否为互斥事件;

3)试用事件表示随机事件A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为2,则以下四个命题中错误的是

A. 直线为异面直线 B. 平面

C. D. 三棱锥的体积为

查看答案和解析>>

同步练习册答案