精英家教网 > 高中数学 > 题目详情
若椭圆的两个焦点和短轴两个顶点是有一个内角为的菱形的四个顶点,则椭圆的离心率为         
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上,中心在坐标原点的椭圆C的离心率为,且过点
(1)求椭圆C的方程;
(2)直线分别切椭圆C与圆(其中)于A.B两点,求|AB|的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率.直线:与椭圆C相交于两点, 且.
(1)求椭圆C的方程;
(2)点P(,0),A、B为椭圆C上的动点,当时,求证:直线AB恒过一个定点.并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆C:过点,且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是椭圆C的两个焦点,⊙O是以F1F2为直径的圆,直线l: y=kx+m与⊙O相切,并与椭圆C交于不同的两点AB,若,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在椭圆中,F1,F2分别为椭圆的左、右焦点,B、D分别
为椭圆的左、右顶点,A为椭圆在第一象限内的一点,直线AF1交椭圆于另
一点C,交y轴于点E,且点F1、F2三等分线段BD.
(1)求的值;
(2)若四边形EBCF2为平行四边形,求点C的坐标;
(3)当时,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题15分)已知椭圆的右焦点恰好是抛物线的焦点
是椭圆的右顶点.过点的直线交抛物线两点,满足
其中是坐标原点.
(1)求椭圆的方程;
(2)过椭圆的左顶点轴平行线,过点轴平行线,直线
相交于点.若是以为一条腰的等腰三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直角三角形的直角顶点为动点,为两个定点,作,动点满足,当点运动时,设点的轨迹为曲线,曲线轴正半轴的交点为
(Ⅰ) 求曲线的方程;
(Ⅱ) 是否存在方向向量为m的直线,与曲线交于两点,且 与的夹角为?若存在,求出所有满足条件的直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆两准线间的距离是焦距的4倍,则该椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在等腰梯形ABCD中,AB//CD,且AB=2AD,设,以A,B为焦点且过点D的双曲线的离心率为,以C,D为焦点且过点A的椭圆的离心率为,则                              (   )
                 
A.随着角度的增大,增大,为定值
B.随着角度的增大,减小,为定值
C.随着角度的增大,增大,也增大
C.随着角度的增大,减小,也减小

查看答案和解析>>

同步练习册答案