精英家教网 > 高中数学 > 题目详情
与y轴相切且和曲线x2+y2=4(0≤x≤2)内切的动圆的圆心的轨迹方程是( )
A.y2=-4(x-1)(0<x≤1)
B.y2=4(x-1)(0<x≤1)
C.y2=4(x+1)(0<x≤1)
D.y2=-2(x-1)(0<x≤1)
【答案】分析:设圆心为(x,y),则动圆的半径为x,因为与已知圆内切,还要与y轴相切,所以可知x的范围为0<x≤1.再根据动圆与已知圆内切可的等式,从而可求轨迹方程.
解答:解:设动圆圆心为P(x,y),由动圆切于y轴,故r=|x|.又由动圆与已知圆内切可知=2-|x|,
整理得y2=-4|x|+4.由于半圆需满足0≤x≤2的条件,∴y2=-4(x-1)(0<x≤1).
故选A.
点评:本题考查轨迹方程的求法,关键是利用好相切的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

与y轴相切且和曲线x2+y2=4(0≤x≤2)内切的动圆的圆心的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与y轴相切且和曲线x2+y2=4(0≤x≤2)内切的动圆的圆心的轨迹方程是(  )
A.y2=-4(x-1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=4(x+1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省运城市临猗中学高二(上)周考数学试卷(4)(理科)(解析版) 题型:选择题

与y轴相切且和曲线x2+y2=4(0≤x≤2)内切的动圆的圆心的轨迹方程是( )
A.y2=-4(x-1)(0<x≤1)
B.y2=4(x-1)(0<x≤1)
C.y2=4(x+1)(0<x≤1)
D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河北省唐山一中(上)期中数学试卷(解析版) 题型:选择题

与y轴相切且和曲线x2+y2=4(0≤x≤2)内切的动圆的圆心的轨迹方程是( )
A.y2=-4(x-1)(0<x≤1)
B.y2=4(x-1)(0<x≤1)
C.y2=4(x+1)(0<x≤1)
D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

同步练习册答案