分析 (1)利用诱导公式、二倍角公式化简函数f(x)=sin2x,再根据正弦函数的图象的对称性求得f(x)的图象的对称,由正弦函数的单调性求得f(x)的增区间.
(2)由条件利用正弦函数的定义域和值域求得f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.
解答 解:(1)函数f(x)=-2sin(-x)sin($\frac{π}{2}$+x)=2sinx•cosx=sin2x,
令2x=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{4}$,可得函数的图象的对称轴为 x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z.
令2kπ-$\frac{π}{2}$≤2x≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{4}$≤x≤kπ+$\frac{π}{4}$,可得函数的增区间为[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z.
(2)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上,2x∈[-$\frac{π}{3}$,π],
故当2x=-$\frac{π}{3}$,即x=-$\frac{π}{6}$时,f(x)=sin2x取得最小值为-$\frac{\sqrt{3}}{2}$,
当2x=$\frac{π}{2}$,即x=$\frac{π}{4}$时,f(x)=sin2x取得最大值为1.
点评 本题主要考查诱导公式、二倍角公式的应用,正弦函数的单调性、定义域和值域,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=2x | B. | f(x)=2|x|+x2 | C. | f(x)=$\frac{1}{{2}^{x}}$+x3 | D. | f(x)=ex-e-x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p∧q | B. | ¬p∨q | C. | ¬p∧q | D. | ¬p∨¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∈(-1,1)使得cosx<$\frac{1}{2}$ | |
B. | “-3<m<0”是“函数f(x)=x+log2x+m在区间($\frac{1}{2}$,2)上有零点”的必要不充分条件 | |
C. | x=$\frac{π}{6}$是曲线f(x)=$\sqrt{3}$sin2x+cos2x的一条对称轴 | |
D. | 若x∈(0,2),则在曲线f(x)=ex(x-2)上任意一点处的切线的斜率不小于-$\frac{1}{e}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com