精英家教网 > 高中数学 > 题目详情
已知函数,其中实数a,b是常数.
(1)已知a∈{0,1,2},b∈{0,1,2},求事件A“f(1)≥0”发生的概率;
(2)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式.
【答案】分析:(1)当a∈{0,1,2},b∈{0,1,2}时,等可能发生的基本事件(a,b)共有9个,其中事件A“”,包含6个基本事件,由此能求出事件“f(1)≥0”发生的概率.
(2),是R上的奇函数,得f(0)=0,b=0.,f'(x)=x2-a,再由a的取值范围分类讨论知答案.
解答:解:(1)当a∈{0,1,2},b∈{0,1,2}时,等可能发生的基本事件(a,b)共有9个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).(4分)
其中事件A“”,包含6个基本事件:(0,0),(0,1),(0,2),(1,1),(1,2),(2,2).(4分)
.(6分)
答:事件“f(1)≥0”发生的概率.(7分)
(2),是R上的奇函数,得f(0)=0,b=0.(8分)
,f'(x)=x2-a,(9分)
当a≥1时,因为-1≤x≤1,所以f'(x)≤0,f(x)在区间[-1,1]上单调递减,
从而;(11分)
当a≤-1时,因为-1≤x≤1,所以f'(x)>0,f(x)在区间[-1,1]上单调递增,
从而.(13分)
综上,知.(14分)
点评:本题考查概率的应用和性质,出题者巧妙地把函数和概率融合在一起,体会了出题者的智慧,解题时也要合理地运用函数的性质进行求解.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年山东省日照市高三12月校际联考文科数学试卷(解析版) 题型:解答题

已知函数,其中实数a为常数.

(I)当a=-l时,确定的单调区间:

(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;

(Ⅲ)当a=-1时,证明

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山市高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知函数,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年广东省中山市重点中学高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年重庆市高考数学试卷(理科)(解析版) 题型:解答题

已知函数,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案