精英家教网 > 高中数学 > 题目详情
已知a>0且a≠1,设命题p:函数y=ax+1在R上单调递减,命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.
分析:由题意可得,P:0<a<1;由△=(2a-3)2-4>0可得q,然后由p∨q为真,p∧q为假,可知p,q一真一假,分类讨论进行求解
解答:解:∵y=ax+1单调递减
∴P:0<a<1
∵曲线y=x2+(2a-3)x+1与x轴交于不同的两点
∴△=(2a-3)2-4>0
∴q:a
5
2
或a
1
2

∵“p∨q”为真,且“p∧q”为假
∴p真q假,或p假q真
当p真q假时,
0<a<1
a>
5
2
或a<
1
2

∴0<a<
1
2

当p假q真时,
a>1
a>
5
2
或a<
1
2

∴a
5
2

综上可得,a
5
2
或0<a<
1
2
点评:本题以复合命题的真假关系的判断为载体,主要考查了知识函数与二次函数的性质的简单应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,则使方程loga(x-ak)=loga2(x2-a2)有解时的k的取值范围为
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案