精英家教网 > 高中数学 > 题目详情
4.已知△ABC中,内角A,B,C的对边分别为a,b,c,b=2,B=45°,若三角形有两解,则a的取值范围是(  )
A.a>2B.0<a<2C.2<a<2$\sqrt{2}$D.2<a<2$\sqrt{3}$

分析 由题意判断出三角形有两解时A的范围,通过正弦定理及正弦函数的性质推出a的范围即可.

解答 解:由AC=b=2,要使三角形有两解,就是要使以C为圆心,半径为2的圆与BA有两个交点,
当A=90°时,圆与AB相切;
当A=45°时交于B点,也就是只有一解,
∴45°<A<135°,且A≠90°,即$\frac{\sqrt{2}}{2}$<sinA<1,
由正弦定理以及asinB=bsinA.可得:a=$\frac{bsinA}{sinB}$=2$\sqrt{2}$sinA,
∵2$\sqrt{2}$sinA∈(2,2$\sqrt{2}$).
∴a的取值范围是(2,2$\sqrt{2}$).
故选:C.

点评 此题考查了正弦定理,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知ω>0,A>0,a>0,0<φ<π,y=sinx 的图象按照以下次序变换:①纵坐标不变,横坐标变为原来的$\frac{1}{ω}$;②向左移动φ 个单位;③向上移动a 个单位;④纵坐标变为A倍.得到y=3sin(2x-$\frac{π}{6}$)+1 的图象,则A+a+ω+φ=$\frac{16}{3}$+$\frac{11}{12}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,若2${\;}^{{a}_{2}}$•2${\;}^{{a}_{8}}$=256,则S9的值为(  )
A.64B.36C.72D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U=R,集合A={x|(x+1)(x-3)<0},B={x|x-1≥0},则图中阴影部分所表示的集合为(  )
A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤{e}^{3}}\\{-x+{e}^{3}+3,x>{e}^{3}}\end{array}\right.$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),则$\frac{f({x}_{3})}{{x}_{2}}$的最大值为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设△ABC的内角A,B,C所对的边分别为a,b,c,且acosB=4,bsinA=3.
(1)求tanB及边长a的值;
(2)若△ABC的面积S=9,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$当1<a<2时,关于x的方程f[f(x)]=a实数解的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$y=\sqrt{x}$,求与直线y=-2x-4垂直的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图是根据我省的统计年鉴中的资料做成的2007年至2016年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2007年至2016年我省城镇居民百户家庭人口数的平均数为303.6.

查看答案和解析>>

同步练习册答案