科目:高中数学 来源: 题型:
如图,F是椭圆(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且,求直线l2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
若椭圆 (a>b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5∶3两段,则此椭圆的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆方程.
查看答案和解析>>
科目:高中数学 来源:2015届广东东莞南开实验学校高二上期中文数学卷(解析版) 题型:选择题
连接椭圆 (a>b>0)的一个焦点和一个顶点得到的直线方程为x-2y+2=0,则该椭圆的离心率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com