精英家教网 > 高中数学 > 题目详情

【题目】如图,某广场中间有一块边长为2百米的菱形状绿化区,其中是半径为1百米的扇形, 管理部门欲在该地从修建小路:在弧上选一点(异于两点),过点修建与平行的小路.问:点选择在何处时,才能使得修建的小路的总长最小?并说明理由.

【答案】时,总长最小.

【解析】

试题分析:由题意,,过分别作的垂线,在直角三角形中用表示线段长度,将总长最小转化为三角函数的最值问题,对函数求导判断单调性,得出在时,总长最小.

试题解析:解:连接,过垂足为,过垂足为

,在中,

,则

,则

.....................4分

中,,

………………………………6分

所以总路径长,.............8分

.......................10分

,当时,

时,............................11分

所以当时,总路径最短.

答:当时,总路径最短.......................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=emxx2mx.

(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;

(2)若对于任意x1x2∈[-1,1],都有,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品按质量标准分为,,,,五个等级.现从一批该产品随机抽取20个,对其等级进行统计分析,得到频率分布表如下:

等级

频率

1在抽取的20个产品中,等级为5的恰有2个,求,

21的条件下,从等级为35的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像在上连续不断,定义:

),),其中表示函数上的最小值, 表示函数上的最大值,若存在最小正整数,使得对任意的成立,则称函数上的“阶收缩函数”.

(1)若 ,试写出 的表达式;

(2)已知函数 ,判断是否为上的“阶收缩函数”,如果是,求出对应的,如果不是,请说明理由;

(3)已知,函数,是上的2阶收缩函数,求的取值范围.

数学附加题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856301)已知函数f(x)=m(x-1)exx2(m∈R),其导函数为f′(x),若对任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,则实数m的取值范围为(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856312)[选修4-5:不等式选讲]

已知函数f(x)=|xm|-2|x-1|(m∈R).

(Ⅰ)当m=3时,求函数f(x)的最大值;

(Ⅱ)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)令,讨论的单调性并判断有无极值,若有,求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃,梅花,方片以及黑桃,让明、小红、小张、小李四个人进行猜测:

小明说:第1个盒子里面放的是梅花,第3个盒子里面放的是方片

小红说:第2个盒子里面饭的是梅花,第3个盒子里放的是黑桃

小张说:第4个盒子里面放的是黑桃,第2个盒子里面放的是方片

小李说:第4个盒子里面放的是红桃,第3个盒子里面放的是方片

老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是( )

A. 红桃或黑桃 B. 红桃或梅花

C. 黑桃或方片 D. 黑桃或梅花

查看答案和解析>>

同步练习册答案