ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
 £¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-1£¬0£©¡¢F2£¨1£¬0£©£¬ÀëÐÄÂÊΪ
3
3
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÒ»Ö±Ïßl¹ýÍÖÔ²CµÄÓÒ½¹µãF2£¬½»ÍÖÔ²ÓÚµãA¡¢B£®
£¨¢¡£©ÈôÂú×ã
OA
OB
=
2
tan¡ÏAOB
£¨OΪ×ø±êÔ­µã£©£¬Çó¡÷AOBµÄÃæ»ý£»
£¨¢¢£©µ±Ö±ÏßlÓëÁ½×ø±êÖᶼ²»´¹Ö±Ê±£¬ÔÚxÖáÉÏÊÇ·ñ×Ü´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¿Èô´æÔÚ£¬Çó³öP×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©Óɽ¹µã×ø±êµÃ³öc=1£¬½áºÏÀëÐÄÂʵóöa=
3
£¬Çó³öb Öµ£¬×îºóд³öÍÖÔ²CµÄ·½³Ì¼´¿É£»
£¨II£©£¨i£©ÓÉÌâÖÐÌõ¼þ£º¡°
OA
OB
=
2
tan¡ÏAOB
¡±½áºÏÏòÁ¿µÄÊýÁ¿»ý£¬´úÈëÈý½ÇÐÎÃæ»ý¹«Ê½ÇóµÃ´ð°¸£®
£¨ii£©¶ÔÓÚ´æÔÚÐÔÎÊÌ⣬¿ÉÏȼÙÉè´æÔÚ£¬¼´¼ÙÉè´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬ÔÙÀûÓ÷½³ÌµÄ˼Ï룬Çó³ömµÄÖµ£¬Èô³öÏÖì¶Ü£¬Ôò˵Ã÷¼ÙÉè²»³ÉÁ¢£¬¼´²»´æÔÚ£»·ñÔò´æÔÚ£®
½â´ð£º½â£º£¨¢ñ£©c=1£¬ÓÖe=
c
a
=
3
3
£¬¡àa=
3

¡àb2=a2-c2=3-1=2
ËùÒÔ£¬ÍÖÔ²CµÄ·½³ÌÊÇ
x2
3
+
y2
2
=1

£¨¢ò£©£¨¢¡£©¡ß
OA
OB
=
2
tan¡ÏAOB
£¬¡à|
OA
|•|
OB
|•cos¡ÏAOB=
2
tan¡ÏAOB
£¬
¡à|
OA
|•|
OB
|•sin¡ÏAOB=2
£¬¡àS¡÷AOB=
1
2
•|
OA
|•|
OB
|•sin¡ÏAOB=
1
2
¡Á2=1
£®
£¨¢¢£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬
ÒÀÌâÒâ¿ÉÖªÖ±Ïßl¡¢PA¡¢PBбÂÊ´æÔÚÇÒ²»ÎªÁ㣮
²»·ÁÉèP£¨m£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬k¡Ù0
ÓÉ
y=k(x-1)
x2
3
+
y2
2
=1
ÏûÈ¥yµÃ£¨3k2+2£©x2-6k2x+3k2-6=0
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôòx1+x2=
6k2
3k2+2
£¬x1x2=
3k2-6
3k2+2

¡ßÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬
¡àkPA+kPB=0¶ÔÒ»ÇÐkºã³ÉÁ¢£¬¼´
y1
x1-m
+
y2
x2-m
=0
¶ÔÒ»ÇÐkºã³ÉÁ¢
ÓÖy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
´úÈëÉÏʽ¿ÉµÃ2x1x2+2m-£¨m+1£©£¨x1+x2£©=0¶ÔÒ»ÇÐkºã³ÉÁ¢
¡à2¡Á
3k2-6
3k2+2
+2m-(m+1)¡Á
6k2
3k2+2
=0
¶ÔÒ»ÇÐkºã³ÉÁ¢£¬
¼´2m-6=0£¬¡àm=3£¬
¡à´æÔÚP£¨3£¬0£©Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£®
µãÆÀ£º±¾Ð¡Ì⿼²éÍÖÔ²µÄ¼¸ºÎÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²µÈ»ù´¡ÖªÊ¶£¬Í¬Ê±¿¼²é½âÎö¼¸ºÎµÄ»ù±¾Ë¼Ïë·½·¨ºÍ×ۺϽâÌâÄÜÁ¦£»×¢Ò⣨¢ó£©µÄ´¦Àí´æÔÚÐÔÎÊÌâµÄÒ»°ã·½·¨£¬Ê×ÏȼÙÉè´æÔÚ£¬½ø¶ø¸ù¾ÝÌâÒâ¡¢½áºÏÓйØÐÔÖÊ£¬»¯¼ò¡¢×ª»¯¡¢¼ÆË㣬×îºóµÃµ½½áÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
1
2
£¬ÇÒ¾­¹ýµãP(1£¬
3
2
)
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèFÊÇÍÖÔ²CµÄ×ó½¹£¬ÅжÏÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2
3
£¬ÓÒ½¹µãFÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖغϣ¬OΪ×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA¡¢BÊÇÍÖÔ²CÉϵIJ»Í¬Á½µã£¬µãD£¨-4£¬0£©£¬ÇÒÂú×ã
DA
=¦Ë
DB
£¬Èô¦Ë¡Ê[
3
8
£¬
1
2
]£¬ÇóÖ±ÏßABµÄбÂʵÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬
3
2
£©£¬ÇÒÀëÐÄÂÊe=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãB£¨-1£¬0£©ÄÜ·ñ×÷³öÖ±Ïßl£¬Ê¹lÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·¿É½Çø¶þÄ££©ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ³¤Ö᳤ÊÇ4£¬ÀëÐÄÂÊΪ
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©Éè¹ýµãP£¨0£¬-2£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÇÒM£¬N²»ÓëÍÖÔ²µÄ¶¥µãÖغϣ¬ÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ¶ÌÖ᳤Ϊ2£¬ÀëÐÄÂÊΪ
2
2
£¬Éè¹ýÓÒ½¹µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬¹ýA£¬B×÷Ö±Ïßx=2µÄ´¹ÏßAP£¬BQ£¬´¹×ã·Ö±ðΪP£¬Q£®¼Ç¦Ë=
AP+BQ
PQ
£¬ÈôÖ±ÏßlµÄбÂÊk¡Ý
3
£¬Ôò¦ËµÄÈ¡Öµ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸