精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,左焦点为(-
3
,0)
,离心率为
3
2
.设直线l与椭圆C有且只有一个公共点P,记点P在第一象限时直线l与x轴、y轴的交点分别为A、B,且向量
OM
=
OA
+
OB

求:
(I)椭圆C的方程;
(II)|
OM
|
的最小值及此时直线l的方程.
(Ⅰ)由题意,∵左焦点为(-
3
,0)
,离心率为
3
2

c=
3
e=
c
a
=
3
2

∴a=2,于是b2=1,由于焦点在x轴上,故椭圆C的方程为
x2
4
+y2=1
…(5分)
(Ⅱ)设直线l的方程为:y=kx+m(k<0),A(-
m
k
,0),B(0,m)

y=kx+m
x2
4
+y2=1
消去y得:(
1
4
+k2)x2+2kmx+m2-1=0
…(7分)
∵直线l与曲线C有且只有一个公共点,∴△=4k2m2-(1+4k2)(m2-1)=0
即m2=4k2+1①…(9分)
OM
=
OA
+
OB

|
OM
|=
m2
k2
+m2
②…(11分)
将①式代入②得:|
OM
|=
1
k2
+4k2+5
2
1
k2
•4k2
+5
=3

当且仅当k=-
2
2
时,等号成立,故|
OM
|min=3

此时直线方程为:
2
x+2y-2
3
=0
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:山东省济宁市2012届高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

点,左焦

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

同步练习册答案