精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=ex+x2-ax在区间(0,+∞)上存在减区间,则实数a的取值范围是(  )
A.(-∞,+∞)B.(1,+∞)C.(0,+∞)D.(2,+∞)

分析 求导f′(x)=ex+2x-a,从而可得f′(x)=ex+2x-a<0在区间(0,+∞)上有解,再由其单调性确定答案即可.

解答 解:∵f(x)=ex+x2-ax,
∴f′(x)=ex+2x-a;
∵函数f(x)=ex+x2-ax在区间(0,+∞)上存在减区间,
∴f′(x)=ex+2x-a<0在区间(0,+∞)上有解,
又∵f′(x)=ex+2x-a在(0,+∞)上是增函数,
∴f′(0)=e0+2•0-a=1-a<0,
∴a>1;
故选:B.

点评 本题考查了导数的综合应用及存在性问题的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.己知f(x)=$\frac{sin2x}{{cos}^{2}x}$,下面关于此函数的表述,结论正确的序号为(1)(2)(4).
(1)f(x1)=f(x2),则x1-x2必是π的整数倍;
(2)在区间($\frac{π}{2}$,π)上是增函数;
(3)图象关于直线y=0对称;
(4)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且$\overrightarrow{AB}$•$\overrightarrow{BF}$=0,则此双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若Sn为等差数列{an}的前n项和,S9=-36,S13=-104,则a6=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示是一个几何体的三视图,则这个几何体外接球的表面积是(  )
A.16πB.C.12πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知不等式$\frac{x-2}{ax-1}$>0的解集是(-1,2),则二项式(ax-$\frac{1}{ax}$)8的展开式中的常数项为70.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别是双曲线3x2-y2=9的左右焦点,若P在双曲线上且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$的值为  (  )
A.$2\sqrt{5}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$4\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A的概率为(  )
A.$\frac{{{C}_{4}^{3}C}_{48}^{2}}{{C}_{52}^{5}}$B.$\frac{{{C}_{48}^{3}C}_{4}^{2}}{{C}_{52}^{5}}$
C.1-$\frac{{{C}_{48}^{1}C}_{4}^{4}}{{C}_{52}^{5}}$D.$\frac{{{C}_{4}^{3}C}_{48}^{2}{{+C}_{4}^{4}C}_{48}^{1}}{{C}_{52}^{5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若f(x)=ax2+bx+3a+b是偶函数,其定义域是[a-1,2a],则f(x)的最大值为$\frac{31}{27}$.

查看答案和解析>>

同步练习册答案