精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow m=(1\;,\;\;1)$,向量$\overrightarrow n$与向量$\overrightarrow m$夹角为$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$.
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow n$与向量$\overrightarrow q=(1\;,\;\;0)$的夹角为$\frac{π}{2}$,向量$\overrightarrow p=(cosA\;,\;\;2{cos^2}\frac{C}{2})$,其中A、C为△ABC的内角,且2B=A+C.求$|\overrightarrow n+\overrightarrow p|$的取值范围.

分析 (1)利用向量的数量积运算、夹角公式即可得出;
(2)利用由$\overrightarrow n⊥\overrightarrow q$确定出$\overrightarrow{n}$,利用三角形的余弦定理求出∠B,利用向量模的坐标公式求出$|\overrightarrow n+\overrightarrow p|$2,利用三角函数的二倍角公式化简三角函数,利用整体思想求出三角函数的取值范围.

解答 解:(1)设$\overrightarrow{n}$=(x,y),由$\overrightarrow{m}•\overrightarrow{n}$=-1,x+y=1,
$\overrightarrow{n}$与向量$\overrightarrow{m}$夹角为$\frac{3}{4}$π,有$\overrightarrow{m}•\overrightarrow{n}$=|$\overline{m}$||$\overrightarrow{n}$|cos$\frac{3π}{4}$=-1,
所以$|\overrightarrow n|=1$,则x2+y2=1.
解得$\left\{\begin{array}{l}x=-1\\ y=0\end{array}\right.$或$\left\{\begin{array}{l}x=0\\ y=-1\end{array}\right.$,即$\overrightarrow n=(-1\;,\;\;0)$或$\overrightarrow n=(0\;,\;\;-1)$.
(2)由$\overrightarrow n⊥\overrightarrow q$垂直知$\overrightarrow n=(0\;,\;\;-1)$,由2B=A+C知$B=\frac{π}{3}\;,\;\;A+C=\frac{2π}{3}$
若$\overrightarrow n=(0\;,\;\;-1)$,则$\overrightarrow n+\overrightarrow p=(cosA\;,\;\;2{cos^2}\frac{C}{2}-1)=(cosA\;,\;\;cosC)$,
$|\overrightarrow n+\overrightarrow p{|^2}={cos^2}A+{cos^2}C=\frac{1+cos2A}{2}+\frac{1+cos2C}{2}$=$1+\frac{1}{2}[cos2A+cos(\frac{4π}{3}-2A)]=1+\frac{1}{2}cos(2A+\frac{π}{3})$,
0<A<$\frac{2π}{3}$,$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{5π}{3}$,则$\frac{1}{2}\;≤\;1+\frac{1}{2}cos(2A+\frac{π}{3})<\frac{5}{4}$.
则|$\overrightarrow{n}$+$\overrightarrow{p}$|∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{5}}{2}$).

点评 本题考查了向量的数量积运算性质、夹角公式、倍角公式、和差化积、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.化简:$\sqrt{\frac{1+cosα}{1-cosα}}$+$\sqrt{\frac{1-cosα}{1+cosα}}$(π<α<$\frac{3π}{2}$)=-$\frac{2}{sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)、g(x)、h(x)均为一次函数,若对实数x满足:|f(x)|+|g(x)|+h(x)=$\left\{\begin{array}{l}{4x+2}&{x≥2}\\{未知}&{-\frac{1}{2}≤x<2}\\{-2x+4}&{x<-\frac{1}{2}}\end{array}\right.$,则h(x)的解析式为(  )
A.2x+6B.6x-2C.3x-1D.x+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图的程序框图,若输出的$S=\frac{31}{32}$,则输入的整数p的值为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=x2-mx+1在区间[1,2]上单调递增,则实数m的取值范围是(  )
A.(-∞,2]B.(-∞,2)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.计算:log29•log38=(  )
A.6B.8C.10D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设命题p:方程x2+2ax+1=0有两个不相等的负根,命题q:不等式x2+2ax+2a≤0的解集为空集,若命题p∧q为假,命题p∨q为真,则a的取值范围为a≥2或0<a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-2xf′(-1),则f′(-1)=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,在直角梯形ABCD中,AB=7,AD=2,BC=3.如果AB边上的点P使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,那么这样的点P有(  )
A.1个B.2个C.3个D.2个

查看答案和解析>>

同步练习册答案