±¾Ìâ°üÀ¨£¨1£©¡¢£¨2£©¡¢£¨3£©¡¢£¨4£©ËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ´ð£¬
Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
£¨1£©¡¢Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÏPAQÊÇÖ±½Ç£¬Ô²OÓëAPÏàÇÐÓÚµãT£¬ÓëAQÏཻÓÚÁ½µãB£¬C£®ÇóÖ¤£ºBTƽ·Ö¡ÏOBA
£¨2£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÈôµãA£¨2£¬2£©ÔÚ¾ØÕó¶ÔÓ¦±ä»»µÄ×÷ÓÃϵõ½µÄµãΪB£¨-2£¬2£©£¬Çó¾ØÕóMµÄÄæ¾ØÕó
£¨3£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÔÚ¼«×ø±êϵÖУ¬AΪÇúÏߦÑ2+2¦Ñcos¦È-3=0ÉϵĶ¯µã£¬BΪֱÏߦÑcos¦È+¦Ñsin¦È-7=0ÉϵĶ¯µã£¬ÇóABµÄ×îСֵ£®
£¨4£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÒÑÖªa1£¬a2¡­an¶¼ÊÇÕýÊý£¬ÇÒa1•a2¡­an=1£¬ÇóÖ¤£º£¨2+a1£©£¨2+a2£©¡­£¨2+an£©¡Ý3n£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÒªÖ¤Ã÷BTƽ·Ö¡ÏOBA£¬¼´Ö¤¡ÏOBT=¡ÏABT£¬¸ù¾Ý¡ÏPAQÊÇÖ±½Ç£¬Ô²OÓëAPÏàÇÐÓÚµãT£¬ÁªÏëµ½ÇÐÏßµÄÐÔÖÊ£¬ÎÒÃÇ¿ÉÒÔÏÈÁ¬½ÓOT£¬È»ºó¸ù¾ÝQA¡ÎOT£¬½áºÏ½ÇÓë½ÇÖ®¼äµÄµÈÁ¿´ú»»£¬ÎÒÃÇÒ׵ýáÂÛ£®
£¨2£©Ê×ÏÈÓɵãA£¨2£¬2£©ÔÚ¾ØÕóM¶ÔÓ¦±ä»»×÷ÓÃϵõ½µÄµãΪB£¨-2£¬2£©ÒÔ¼°¾ØÕóMµÄ²ÎÊý±í´ïʽ¿ÉÒÔ½â³ý¾ØÕóM£¬ÔÙ¸ù¾ÝM-1M=E£¬¿ÉÖ±½Ó½â³ö¾ØÕóMµÄÄæ¾ØÕó£®
£¨3£©ÏȽ«¦Ñ2+2¦Ñcos¦È-3=0ºÍÖ±ÏߦÑcos¦È+¦Ñsin¦È-7=0¼«×ø±ê·½³ÌÀûÓÃÖ±½Ç×ø±êÓ뼫×ø±ê¼äµÄ¹Øϵ£¬¼´ÀûÓæÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬½øÐдú»»¼´µÃÖ±½Ç×ø±ê·½³Ì£®ÔÙÀûÓõ㵽ֱÏߵľàÀëÇóµÃ|AB|¾àÀëµÄ×îСֵ¼´¿É£®
£¨4£©¸ù¾Ý²»µÈʽµÄ½á¹¹ÌØÕ÷£¬µÃ³ö2+an=1+1+an¡Ý3•£¾0£¬¶Ô¸÷Ïî·ÅËõºó£¬ÔÙÀûÓò»µÈʽµÄÐÔÖÊͬÏò²»µÈʽÏà³Ë£®
½â´ð£º£¨1£©Ö¤Ã÷£ºÁ¬½ÓOT£¬
¡ßATÊÇÇÐÏߣ¬
¡àOT¡ÍAP£®
ÓÖ¡ß¡ÏPABÊÇÖ±½Ç£¬¼´AQ¡ÍAP
¡àAB¡ÎOT£¬
¡à¡ÏTBA=¡ÏBTO
ÓÖ¡ßOT=OB£¬
¡à¡ÏOTB=¡ÏOBT£®
¡à¡ÏOBT=¡ÏTBA£¬¼´BTƽ·Ö¡ÏOBA
£¨2£©½â£ºÒòΪµãA£¨2£¬2£©ÔÚ¾ØÕóM¶ÔÓ¦±ä»»×÷ÓÃϵõ½µÄµãΪB£¨-2£¬2£©£¬
¹ÊÓУº=£¬¼´=£¬
ËùÒÔcos¦Á-sin¦Á=-1£¬cos¦Á+sin¦Á=1£¬
¿É½âµÃ£ºcos¦Á=0£¬sin¦Á=1£¬
ËùÒÔM=£¬ÓÉM-1M=£¬
¿É½âµÃ¾ØÕóMµÄÄæ¾ØÕó£®
£¨3£©½â£ºÔ²·½³ÌΪ£¨x+1£©2+y2=4£¬Ô²ÐÄ£¨-1£¬0£©£¬Ö±Ïß·½³ÌΪx+y-7=0
Ô²Ðĵ½Ö±ÏߵľàÀëd==4£¬ËùÒÔ|AB|min=4-2£®
£¨4£©Ö¤Ã÷£º¡ßa1£¾0£¬1£¾0£»
¡à2+a1=1+1+a1¡Ý¡Ý3•£¾0£»¡­£¨2·Ö£©
ͬÀí£º2+a2=1+1+a2¡Ý3•£¾0£»¡­£¬2+an=1+1+an¡Ý£¾0
Óɲ»µÈʽÐÔÖÊ£ºÉÏÃæn´óÓÚ0µÄͬÏò²»µÈʽÏà³Ë£¬¼´µÃ£º£¨2+a1£©£¨2+a2£©¡­£¨2+an£©¡Ý3n¡­£¨4·Ö£©
¡ßÒÑÖª£ºa1•a2¡­an=1£¬´úÈëÉÏʽµÃ£º£¨2+a1£©£¨2+a2£©¡­£¨2+an£©¡Ý3n¡­£¨6·Ö£©
µãÆÀ£º±¾ÌâÊÇÑ¡×öÌ⣬¿¼²éËÄ·½ÃæµÄÄÚÈÝ£¬Ö÷Òª¿¼²é¶þ½×¾ØÕó±ä»¯ÒÔ¼°ÓɾØÕóÇóÆäÄæ¾ØÕóµÄ·½·¨£¬¿¼²éµãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬Óõ½ÁËÀûÓÃÈýÔª¾ùÖµ²»µÈʽ·ÅËõ·¨ºÍ²»µÈʽµÄÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÑ¡×öÌâ±¾Ìâ°üÀ¨A£¬B£¬C£¬DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐ Á½Ìâ ×÷´ð£¬Ã¿Ð¡Ìâ10·Ö£¬¹²¼Æ20·Ö£¬
½â´ðʱӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
AÑ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
×ÔÔ²OÍâÒ»µãPÒýÔ²µÄÒ»ÌõÇÐÏßPA£¬ÇеãΪA£¬MΪPAµÄÖе㣬¹ýµãMÒýÔ²OµÄ¸îÏß½»¸ÃÔ²ÓÚB¡¢CÁ½µã£¬ÇÒ¡ÏBMP=100¡ã£¬¡ÏBPC=40¡ã£¬Çó¡ÏMPBµÄ´óС£®
BÑ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¶þ½×¾ØÕóA=
ab
cd
£¬¾ØÕóAÊôÓÚÌØÕ÷Öµ¦Ë1=-1µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª¦Á1=
1
-1
£¬ÊôÓÚÌØÕ÷Öµ¦Ë2=4µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª¦Á2=
3
2
£®Çó¾ØÕóA£®
CÑ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=2cos¦Á
y=sin¦Á
(¦ÁΪ²ÎÊý)
£®ÒÔÖ±½Ç×ø±êϵԭµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos(¦È-
¦Ð
4
)=2
2
£®µã
PΪÇúÏßCÉϵĶ¯µã£¬ÇóµãPµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®
DÑ¡ÐÞ4-5£º²»µÈʽѡ½²
ÈôÕýÊýa£¬b£¬cÂú×ãa+b+c=1£¬Çó
1
3a+2
+
1
3b+2
+
1
3c+2
µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾Ìâ°üÀ¨£¨1£©¡¢£¨2£©¡¢£¨3£©¡¢£¨4£©ËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ´ð£¬
Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
£¨1£©¡¢Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÏPAQÊÇÖ±½Ç£¬Ô²OÓëAPÏàÇÐÓÚµãT£¬ÓëAQÏཻÓÚÁ½µãB£¬C£®ÇóÖ¤£ºBTƽ·Ö¡ÏOBA
£¨2£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÈôµãA£¨2£¬2£©ÔÚ¾ØÕóM=
cos¦Á-sin¦Á
sin¦Ácos¦Á
¶ÔÓ¦±ä»»µÄ×÷ÓÃϵõ½µÄµãΪB£¨-2£¬2£©£¬Çó¾ØÕóMµÄÄæ¾ØÕó
£¨3£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÔÚ¼«×ø±êϵÖУ¬AΪÇúÏߦÑ2+2¦Ñcos¦È-3=0ÉϵĶ¯µã£¬BΪֱÏߦÑcos¦È+¦Ñsin¦È-7=0ÉϵĶ¯µã£¬ÇóABµÄ×îСֵ£®
£¨4£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÒÑÖªa1£¬a2¡­an¶¼ÊÇÕýÊý£¬ÇÒa1•a2¡­an=1£¬ÇóÖ¤£º£¨2+a1£©£¨2+a2£©¡­£¨2+an£©¡Ý3n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾Ìâ°üÀ¨¸ß¿¼A£¬B£¬C£¬DËĸöÑ¡ÌâÖеÄB£¬CÁ½¸öСÌ⣬ÿСÌâ10·Ö£¬¹²20·Ö£®°Ñ´ð°¸Ð´ÔÚ´ðÌ⿨ÏàÓ¦µÄλÖÃÉÏ£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
11
21
£¬ÏòÁ¿
¦Â
=
1
2
£®ÇóÏòÁ¿
¦Á
£¬Ê¹µÃA2
¦Á
=
¦Â
£®
C£®Ñ¡ÐÞ4-4£º¼«×ø±êÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵx0yÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=
1
2
t
y=
2
2
+
3
2
t
£¨tΪ²ÎÊý£©£¬ÈôÒÔÖ±½Ç×ø±êϵxOyµÄOµãΪ¼«µã£¬OxΪ¼«ÖᣬÇÒ³¤¶Èµ¥Î»Ïàͬ£¬½¨Á¢¼«×ø±êϵ£¬µÃÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos(¦È-
¦Ð
4
)
£®
£¨1£©ÇóÖ±ÏßlµÄÇãб½Ç£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßl½»ÓÚA¡¢BÁ½µã£¬ÇóAB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÐìÖÝÄ£Ä⣩±¾Ìâ°üÀ¨A¡¢B¡¢C¡¢DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬
Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬°ë¾¶·Ö±ðΪR£¬r£¨R£¾r£¾0£©µÄÁ½Ô²¡ÑO£¬¡ÑO1ÄÚÇÐÓÚµãT£¬PÊÇÍâÔ²¡ÑOÉÏÈÎÒâÒ»µã£¬Á¬PT½»¡ÑO1ÓÚµãM£¬PNÓëÄÚÔ²¡ÑO1ÏàÇУ¬ÇеãΪN£®ÇóÖ¤£ºPN£ºPMΪ¶¨Öµ£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóM=
21
34

£¨1£©Çó¾ØÕóMµÄÄæ¾ØÕó£»
£¨2£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÌØÕ÷ÏòÁ¿£»
C£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÔÚƽÃæÖ±½Ç×ø±êϵx0yÖУ¬ÇóÔ²CµÄ²ÎÊý·½³ÌΪ
x=-1+rcos¦È
y=rsin¦È
(¦È
Ϊ²ÎÊýr£¾0£©£¬ÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos(¦È+
¦Ð
4
)=2
2
£®ÈôÖ±ÏßlÓëÔ²CÏàÇУ¬ÇórµÄÖµ£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑ֪ʵÊýa£¬b£¬cÂú×ãa£¾b£¾c£¬ÇÒa+b+c=1£¬a2+b2+c2=1£¬ÇóÖ¤£º1£¼a+b£¼
4
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸