A. | [$\sqrt{3}$-1,$\sqrt{3}$+1] | B. | [1,3] | C. | [$\sqrt{3}$-1,2] | D. | [1,$\sqrt{3}$+1] |
分析 根据题意画出图形,结合图形,固定正四面体P-ABC的位置,则原点O在以AB为直径的球面上运动,
原点O到点P的最近距离等于PM减去球的半径,最大距离是PM加上球的半径.
解答 解:
如图所示,若固定正四面体P-ABC的位置,则原点O在以AB为直径的球面上运动,
设AB的中点为M,则PM=$\sqrt{{2}^{2}{-1}^{2}}$=$\sqrt{3}$;
所以原点O到点P的最近距离等于PM减去球M的半径,
最大距离是PM加上球M的半径;
所以$\sqrt{3}$-1≤|OP|≤$\sqrt{3}$+1,
即|OP|的取值范围是[$\sqrt{3}$-1,$\sqrt{3}$+1].
故选:A.
点评 本题主要考查了点到直线以及点到平面的距离与应用问题,也考查了数形结合思想的应用问题,是综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1,2,3,4} | B. | {0,1} | C. | {0,1,4} | D. | {1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 如果平面α⊥平面 γ,平面β⊥平面 γ,α∩β=l,那么l⊥γ | |
B. | 如果平面α⊥平面 β,那么平面α内一定存在直线平行于平面β | |
C. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β | |
D. | 如果平面α⊥平面 β,过α内任意一点作交线的垂线,那么此垂线必垂直于β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com