精英家教网 > 高中数学 > 题目详情
6.若函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,M,N分别是这段图象的最高点与最低点,且OM⊥ON,则A=(  )
A.$\frac{π}{6}$B.$\frac{\sqrt{7}π}{12}$C.$\frac{\sqrt{7}π}{6}$D.$\frac{\sqrt{7}π}{3}$

分析 由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用两个向量垂直的性质,两个向量的数量积的运算法则,求得A的值.

解答 解:由题中图象知$\frac{T}{4}$=$\frac{π}{3}$-$\frac{π}{12}$,∴T=π,∴ω=2,再根据五点法作图可得2•$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,
∴函数y=Asin(2x+$\frac{π}{3}$),
则M($\frac{π}{12}$,A),N($\frac{7π}{12}$,-A),$\overrightarrow{OM}$⊥$\overrightarrow{ON}$,∴$\overrightarrow{OM}•\overrightarrow{ON}$=$\frac{{7π}^{2}}{144}$-A2=0,∴A=$\frac{\sqrt{7}•π}{12}$.
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,两个向量垂直的性质,两个向量的数量积的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2x+$\frac{1}{4}$x-5在区间(n,n+1)(n∈N+)内有零点,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=1-$\frac{4}{2{a}^{x}+a}$(a>0且a≠1)是定义在R上的奇函数.
(Ⅰ)求a的值;
(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,$\overrightarrow{b}$=(1,-2),$\overrightarrow{a}$•$\overrightarrow{b}$=-10
(Ⅰ)求向量$\overrightarrow{a}$的坐标;
(Ⅱ)若$\overrightarrow{c}$=(6,-7),求|$\overrightarrow{a}$+$\overrightarrow{c}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,在(0,+∞)上单调递减的是(  )
A.y=|x-1|B.y=log2xC.y=(x+1)2D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=cos(ωx-$\frac{π}{3}$)(ω∈N*)图象的一条对称轴是x=$\frac{π}{6}$,则ω的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在平面直角坐标系xOy中,以O为角的顶点,x轴正半轴为始边的角α、β的终边分别与单位圆交于点A,B,若点A的横坐标是$\frac{4}{5}$,点B的纵坐标是$\frac{\sqrt{3}}{2}$.
(1)求cos(α-β)的值;
(2)求$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,P,Q分别为双曲线和椭圆上不同于A,B的动点,且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),设AP,BP,AQ,BQ的斜率分别为k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求证:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)设F2′,F2分别为双曲线和椭圆的右焦点,且PF2′∥QF2,试判断k12+k22+k32+k42是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$sinα=-\frac{{\sqrt{5}}}{5}$,α为第四象限角,求$\frac{cosα+sinα}{cosα-sinα}$的值.

查看答案和解析>>

同步练习册答案