精英家教网 > 高中数学 > 题目详情

【题目】已知函数是奇函数.

求实数m,n的值;

若函数的定义域为判断函数的单调性,并用定义证明;是否存在实数t,使得关于x的不等式上有解?若存在,求出t的取值范围;若不存在,说明理由.

【答案】(1); (2)

【解析】

1)根据奇偶性的定义得到,构造出关于的方程,求解得到结果;(2)根据定义域可知;①将化简为,可知函数为减函数,再利用定义来证明;②根据单调性,将所求不等式转化为:,从而得到,求解出的最大值,从而得到所求范围.

1是奇函数 恒成立

,整理得

,解得:

(2)的定义域为

上的单调减函数

证明:任取,且,则:

,则

,即

上的单调减函数

②由,得

可得:

上的单调减函数

整理得:

上有解

上单调递减

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣a|, (Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2﹣a|对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数关于函数的性质,有以下四个推断:

的定义域是 的值域是

是奇函数; 是区间上的增函数.

其中推断正确的题号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2(x1<x2),且不等式f(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强学生体质,学校组织体育社团,某宿舍有4人积极报名参加篮球和足球社团,每人只能从两个社团中选择其中一个社团,大家约定:每个人通过掷一枚质地均匀的骰子决定自己参加哪个社团,掷出点数为5或6的人参加篮球社团,掷出点数小于5的人参加足球社团.

(Ⅰ)求这4人中恰有1人参加篮球社团的概率;

(Ⅱ)用分别表示这4人中参加篮球社团和足球社团的人数,记随机变量的乘积,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四个小动物换座位,开始是鼠、猴、兔、猫分别坐在 1,2,3,4 号位子上(如图), 第一次前后排动物互换座位,第二次左右列动物互换座位,.....,这样交替进行下去,那么第 2013 次互换座位后,小兔的座位对应的是( )

A. 编号 1 B. 编号 2 C. 编号 3 D. 编号 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边满足

(1)求的大小

(2)若C角最小,求的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lx+2y-2=0.试求:

1)点P-2-1)关于直线l的对称点坐标;

2)直线l关于点(11)对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(a为常数)的图象与轴交于点,曲线在点处的切线斜率为

(1)的值及函数的极值;

(2)证明:当时,

查看答案和解析>>

同步练习册答案