精英家教网 > 高中数学 > 题目详情
已知平面,直线,且有,则下列四个命题正确的个数为(    )
①若;②若;③若;④若
A.B.C.D.
A

试题分析:正确的命题只有①,当时,由可知,,而,所以,故①为真命题;对于②,当时,有可能在平面内,故②不正确;对于③,当时,可能平行,也可能相交,还有可能异面,故③不正确;对于④,当时,可能平行,可能垂直,也可能既不平行也不垂直,故④错误;综上可知,选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在矩形ABCD中,AB=a,BC=a,以对角线AC为折线将直角三角形ABC向上翻折到三角形APC的位置(B点与P点重合),P点在平面ACD上的射影恰好落在边AD上的H处.

(1)求证:PA⊥CD;
(2)求直线PC与平面ACD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBCOAC中点.
 
(1)证明:A1O⊥平面ABC
(2)若E是线段A1B上一点,且满足VEBCC1·VABCA1B1C1,求A1E的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P为DN的中点.
 
(1)求证:BD⊥MC;
(2)线段AB上是否存在点E,使得AP∥平面NEC?若存在,说明在什么位置,并加以证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥O ­ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:(1)平面BDO⊥平面ACO;(2)EF∥平面OCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则

(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH是正方形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设l,m,n为三条不同的直线,α,β为两个不同的平面,下列命题中正确的个数是(  )
①若l⊥α,m∥β,α⊥β,则l⊥m;
②若m?α,n?α,l⊥m,l⊥n,则l⊥α;
③若l∥m,m∥n,l⊥α,则n⊥α;
④若l∥m,m⊥α,n⊥β,α∥β,则l∥n.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在棱长为2的正方体ABCDA1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为________.

查看答案和解析>>

同步练习册答案