精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,过分别作曲线的切线,且关于轴对称,求证: .

【答案】(1)见解析;(2) 见解析.

【解析】试题分析:(1) 求出,分五种情讨论,分别令得增区间, 得减区间;(2)根据导数的几何意义可求出两切线的斜率分别为,根据切点处两函数纵坐标相等可得关于的两个等式,由其中一个等式求得的范围,再根据另一个等式利用导数求得的范围.

试题解析:由已知得,所以.

(1) . ① 若,当时, ;当时, ,所以的单调递增区间为

单调递减区间为. ②若,当时, ;当时, ,所以的单调递增区间为;单调递减区间为. ③ 若,当时, ;当时, ,所以的单调递增区间为;单调递减区间为.④若,故的单调递减区间为.⑤若,当时, ;当时, ,所以的单调递增区间为;单调递减区间为.

时, 的单调递增区间为;单调递减区间为.

时, 的单调递增区间为;单调递减区间为.当时, 的单调递增区间为;单调递减区间为.

时, 的单调递减区间为;当时, 单调递增区间为

单调递减区间为,

(2) ,设的方程为,切点为,则,所以.由题意知,所以的方程为,设的切点为,则.

,即,令,在定义域上, ,所以上, 是单调递增函数,又,所以,即,令,则,所以,故

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是( )

A. 简单随机抽样每个个体被抽到的机会不一样,与先后有关

B. 由生物学知道生男生女的概率均为,一对夫妇生两个孩子,则一定为一男一女

C. 互斥事件一定是对立事件,对立事件不一定是互斥事件

D. 老师在某班学号为1~50的50名学生中依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,各棱长均为6 分别是侧棱上的点,且.

(1)在上是否存在一点,使得平面?证明你的结论;

2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年被业界称为(虚拟现实技术)元年,未来技术将给教育、医疗、娱乐、商业、交通旅游等多领域带来极大改变,某教育设备生产企业有甲、乙两类产品,其中生产一件甲产品需团队投入15天时间, 团队投入20天时间,总费用10万元,甲产品售价为15万元/件;生产一件乙产品需团队投入20天时间, 团队投入16天时间,总费用15万元,乙产品售价为25万元/件, 两个团队分别独立运作.现某客户欲以不超过200万元订购该企业甲、乙两类产品,要求每类产品至少各3件,在期限180天内,为使企业总效益最佳,则最后交付的甲、乙两类产品数之和为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)在ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.

(1)求角B的大小; (2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,并且直线平分圆.

(1)求圆的方程;

(2)若直线与圆交于两点,是否存在直线,使得为坐标原点),若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数)

(1)设过点的直线与曲线相切于点,求的值;

(2)函数的的导函数为,若上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,且a1 , a4 , a13成等比数列,数列{ }是首项为1,公比为3的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an+bn}的前n项和Rn , 若不等式 ≤λ3n+n+3对n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是~分及~分的学生中选两人,记他们的成绩为,求满足“”的概率.

查看答案和解析>>

同步练习册答案