精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinωx•cos(ωx+
π
6
)(ω>0)图象的两相邻对称轴间的距离为
π
2

(1)求ω的值;
(2)求函数f(x)在[0,
π
2
]上的最大值.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)先化简求得解析式f(x)=
1
2
sin(2wx+
π
6
)-
1
4
,由f(x)图象的两相邻对称轴间的距离为
π
2
,可求周期,即可求w的值;
(2)由(1)知f(x)=
1
2
sin(2x+
π
6
)-
1
4
,由0≤x≤
π
2
,可得
π
6
≤2x+
π
6
6
,即可求函数f(x)在[0,
π
2
]上的最大值.
解答: 解:(1)f(x)=sinwx•cos(wx+
π
6
)

=sinwx•(
3
2
coswx-
1
2
sinwx)
=
3
2
sinwx•coswx-
1
2
sin2wx
=
3
4
sin2wx-
1
4
+
cos2wx
4

=
1
2
sin(2wx+
π
6
)-
1
4

∵f(x)图象的两相邻对称轴间的距离为
π
2

则f(x)的周期T=
2w

∴w=1
(2)由(1)知f(x)=
1
2
sin(2x+
π
6
)-
1
4

0≤x≤
π
2

π
6
≤2x+
π
6
6

则当2x+
π
6
=
π
2

x=
π
6
时,f(x)在[0,
π
2
]
上有最大值f(x)max=
1
4
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的图象与性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数g(x)=x2-4x+9在[-2,0]上的最小值为(  )
A、5B、9C、21D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
-1
2
+
sin
5x
2
2sin
x
2
,x∈(0,π)
(1)将f(x)表示成cosx的多项式
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:(1-a)x+ay-2=0,l2:ax+(2a+1)y+3=0,则“a=-2”是“l1⊥l2”成立的(  )
A、充分不变要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

“q≤1”是“函数f(x)=x2-x+q存在零点”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,若f(a)+f(b)=0,则a+2b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求an与an+1的关系式;
(2)在满足条件的所有数列{an}中,求a2015最小值;
(3)若数列{an}各项都为正数,设数列{bn}满足an(2bn-1)=3,并记Tn为{bn}的前n项和,问:是否存在常数c使得对任意的正整数n,都有Tn≥c成立?如果存在,请写出c的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:sinα=tan(α-β),求证:sinβcos(α-β)=sin2(α-β)sin2
a
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

当a>l时,函数f (x)=logax和g(x)=(l-a)x的图象的交点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步练习册答案