精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E,F分别是AB,PD的中点,若PA=AD=3,CD=
①求证:AF∥平面PCE
②求证:平面PCE⊥平面PCD
③求直线FC与平面PCE所成角的正弦值.

【答案】解:①取PC中点G,连接EG,FG;又由F为PD中点
∴FGCD
又∵AECD
∴FGAE,即可得四边形AEFG是平行四边形
∴AF∥EG
又AF平面PCE,EG平面PCE
∴AF∥平面PCE
②∵PA⊥平面ABCD
∴平面PAD⊥平面ABCD
∵CD⊥AD,∴CD⊥平面PAD,又AF在面PAD内
∴CD⊥AF
∵PA=AD,F为PD中点
∴AF⊥PD,又∵PD∩CD=D
∴AF⊥平面PCD
又∵EG∥AF
∴EG⊥平面PCD
又∵EG平面PCE
∴平面PCE⊥平面PCD
③在平面PCD内作FH⊥PC,则FH⊥平面PCE
∴∠FCH是FC与平面PCE所成的角
在△FCH中,∴sin
∴直线FC与平面PCE所成角的正弦值为
【解析】①根据有中点找中点做出辅助线,得到三组线线平行,得到四边形是一个平行四边形,得到线线平行,根据线面平行的判断得到结论.
②要证明面面垂直,根据证明面面垂直的判断需要找一条和两个平面垂直的一条直线,根据线面垂直的判断和性质,得到结论.
③在平面PCD内作FH⊥PC,则FH⊥平面PCE,得到∠FCH是FC与平面PCE所成的角,在这个可解的三角形中,求出角的正弦值.
【考点精析】根据题目的已知条件,利用向量语言表述面面的垂直、平行关系的相关知识可以得到问题的答案,需要掌握若平面的法向量为,平面的法向量为,要证,只需证,即证;要证,只需证,即证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+2mx+2m+3mR),若关于x的方程fx=0有实数根,且两根分别为x1x2,则(x1+x2x1x2,的最大值为()

A. B. 2C. 3D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足| + |= + )+2.
(1)求曲线C的方程;
(2)动点Q(x0 , y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的长方体中,AB=2 ,AD= = ,E、F分别为 的中点,则异面直线DE、BF所成角的大小为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】届世界杯足球赛在俄罗斯进行,某校足球协会为了解该校学生对此次足球盛会的关注情况,随机调查了该校名学生,并将这名学生分为对世界杯足球赛“非常关注”与“一般关注”两类,已知这名学生中男生比女生多人,对世界杯足球赛“非常关注”的学生中男生人数与女生人数之比为,对世界杯足球赛“一般关注”的学生中男生比女生少人.

(1)根据题意建立列联表,判断是否有的把握认为男生与女生对世界杯足球赛的关注有差异?

(2)该校足球协会从对世界杯足球赛“非常关注”的学生中根据性别进行分层抽样,从中抽取人,再从这人中随机选出人参与世界杯足球赛宣传活动,求这人中至少有一个男生的概率.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图像与轴无交点,求的取值范围;

(2)若方程在区间上存在实根,求的取值范围;

(3)设函数,当时若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域相同的函数,若存在实数使,则称函数是由“基函数”生成的.

(1)若函数是“基函数”生成的,求实数的值;

(2)试利用“基函数”生成一个函数,且同时满足:①是偶函数;②在区间上的最小值为.求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A中任意两数之和不能被5整除,则的最大值为(

A. 17B. 18C. 15D. 16

查看答案和解析>>

同步练习册答案