精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cos2x,二次函数g(x)满足g(0)=4,且对任意的x∈R,不等式﹣3x2﹣2x+3≤g(x)≤4x+6成立,则函数f(x)+g(x)的最大值为(
A.5
B.6
C.4
D.7

【答案】A
【解析】解:∵二次函数g(x)满足g(0)=4, ∴设g(x)=ax2+bx+4,
由﹣3x2﹣2x+3≤4x+6得3x2+6x+3≥0即3(x+1)2≥0,
即当x=﹣1时,3(x+1)2=0,此时直线y=4x+6与y=﹣3x2﹣2x+3相切,切点为(﹣1,2),
此时g(x)过(﹣1,2),则a﹣2b+4=2,得b= +1,
即g(x)=ax2+( +1)x+4,
由﹣3x2﹣2x+3≤g(x)≤4x+6恒成立得
﹣3x2﹣2x+3≤ax2+( +1)x+4≤4x+6,
由﹣3x2﹣2x+3≤ax2+( +1)x+4得(a+3)x2+( +3)x+1≥0恒成立,当a=﹣3时,不满足条件.
当a≠﹣3时, ,得 得﹣2≤a≤6,
由ax2+( +1)x+4≤4x+6得ax2+( ﹣3)﹣2≤0恒成立,当a=0时,不满足条件.
当a≠0时, ,得 ,得﹣18≤a≤﹣2,
综上a=﹣2,
则g(x)=﹣2x2+4,当x=0时函数g(x)取得最大值4,
而当x=0时,f(x)=cos2x也取得最大值1,
则函数f(x)+g(x)=cos2x﹣2x2+4的最大值为1+4=5,
故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知O为坐标原点,点A、B的坐标分别为(1,1)、(﹣3,3).若动点P满足 ,其中λ、μ∈R,且λ+μ=1,则点P的轨迹方程为(
A.x﹣y=0
B.x+y=0
C.x+2y﹣3=0
D.(x+1)2+(y﹣2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)lnx+b.
(1)当a=0时,讨论函数f(x)在[ ,+∞)上的零点个数;
(2)当a>1且函数f(x)在(1,e)上有极小值时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn . 已知a1=2,Sn+1=4an+2.
(1)设bn=an+1﹣2an , 证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有限集,如果中元素满足,就称为“完美集”.

①集合不是“完美集”;

②若是两个不同的正数,且是“完美集”,则至少有一个大于2

③二元“完美集”有无穷多个;

④若,则“完美集”有且只有一个,且

其中正确的结论是________(填上你认为正确的所有结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,M(x1 , y1),N(x2 , y2)是椭圆 + =1上的点,且x1x2+2y1y2=0,设动点P满足 = +2
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)若直线l:y=x+m(m≠0)与曲线C交于A,B两点,求三角形OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(3x+3φ)﹣2sin(x+φ)cos(2x+2φ),其中|φ|<π,若f(x)在区间 上单调递减,则φ的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案