分析 (1)利用三种方程的互化方法求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)求出圆C1的圆心到直线C2的距离d0=$\frac{|1+1+2|}{\sqrt{2}}$=2$\sqrt{2}$,即可求曲线C1上的点到曲线C2的距离的取值范围.
解答 解:(1)曲线C1化为普通方程为(x-1)2+(y-1)2=2
展开后得x2-2x+y2-2y=0
再由x=ρcosθ,y=ρsinθ代入得极坐标方程为ρ=2sinθ+2cosθ…(2分)
曲线C2展开得$\frac{\sqrt{2}}{2}$ρsinθ+$\frac{\sqrt{2}}{2}$ρcosθ+$\sqrt{2}$=0,
又x=x=ρcosθ,y=ρsinθ,得直角坐标方程为x+y+2=0…(5分)
(2)由(1)知曲线C1的直角坐标方程为(x-1)2+(y-1)2=2,是以(1,1)为圆心,1为半径的圆,曲线C2是一条直线
圆C1的圆心到直线C2的距离d0=$\frac{|1+1+2|}{\sqrt{2}}$=2$\sqrt{2}$…(8分)
故曲线C1上的点到C1的距离d的取值范围是[$\sqrt{2}$,3$\sqrt{2}$]…(10分)
点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程、点到直线的距离公式公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-4,0] | B. | [-4,-2]∪[-1,0] | C. | (-4,0] | D. | (-4,-2]∪(-1,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b⇒a-c>b-c | B. | a>b⇒ac>bc | C. | a>b⇒a2>b2 | D. | a>b⇒ac2>bc2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com