精英家教网 > 高中数学 > 题目详情
16.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$,以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)+$\sqrt{2}$=0.
(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)求曲线C1上的点到曲线C2的距离的取值范围.

分析 (1)利用三种方程的互化方法求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)求出圆C1的圆心到直线C2的距离d0=$\frac{|1+1+2|}{\sqrt{2}}$=2$\sqrt{2}$,即可求曲线C1上的点到曲线C2的距离的取值范围.

解答 解:(1)曲线C1化为普通方程为(x-1)2+(y-1)2=2
展开后得x2-2x+y2-2y=0
再由x=ρcosθ,y=ρsinθ代入得极坐标方程为ρ=2sinθ+2cosθ…(2分)
曲线C2展开得$\frac{\sqrt{2}}{2}$ρsinθ+$\frac{\sqrt{2}}{2}$ρcosθ+$\sqrt{2}$=0,
又x=x=ρcosθ,y=ρsinθ,得直角坐标方程为x+y+2=0…(5分)
(2)由(1)知曲线C1的直角坐标方程为(x-1)2+(y-1)2=2,是以(1,1)为圆心,1为半径的圆,曲线C2是一条直线
圆C1的圆心到直线C2的距离d0=$\frac{|1+1+2|}{\sqrt{2}}$=2$\sqrt{2}$…(8分)
故曲线C1上的点到C1的距离d的取值范围是[$\sqrt{2}$,3$\sqrt{2}$]…(10分)

点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程、点到直线的距离公式公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=-x2+|x|的递减区间是[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设焦点在y轴上的双曲线渐近线方程为$y=±\frac{{\sqrt{3}}}{3}x$,且c=2,已知点A($1,\frac{1}{2}$)
(Ⅰ)求双曲线的标准方程;
(Ⅱ)过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.对定义在[1,+∞)上的函数f(x)和常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“凯森数对”.
(1)若(1,1)是f(x)的一个“凯森数对”,且f(1)=3,求f(16);
(2)已知函数f1(x)=log3x与f2(x)=2x的定义域都为[1,+∞),问它们是否存在“凯森数对”?分别给出判断并说明理由;
(3)若(2,0)是f(x)的一个“凯森数对”,且当1<x≤2时,f(x)=$\sqrt{2x-{x^2}}$,求f(x)在区间(1,+∞)上的不动点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)={log_5}({6^x}+1)$的值域为(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是定义域为R的偶函数,对任意的非负实数x,有f(x+2)=2f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{x^2}-2x\;,\;\;x∈[{0\;,\;\;1})\\-{2^x}\;,\;\;x∈[{1\;,\;\;2})\end{array}$,若x∈[-2,0]时,f(x)的值域是(  )
A.[-4,0]B.[-4,-2]∪[-1,0]C.(-4,0]D.(-4,-2]∪(-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)同时满足;①f(x+1)-f(x)=2x;②x∈R,恒有f(x)≥x2-x+1成立;③当x≥0时,f(x)≤2x
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的离心率为e,抛物线x=2py2的焦点为(e,0),则实数p的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b,c∈R,则下列命题为真命题的是(  )
A.a>b⇒a-c>b-cB.a>b⇒ac>bcC.a>b⇒a2>b2D.a>b⇒ac2>bc2

查看答案和解析>>

同步练习册答案