精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,则双曲线的渐近线方程为(  )
A、y=±2x
B、y=±
2
2
x
C、y=±
1
2
x
D、y=±
2
x
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:运用离心率公式,再由双曲线的a,b,c的关系,可得a,b的关系,再由渐近线方程即可得到.
解答: 解:由双曲线的离心率为
3

则e=
c
a
=
3
,即c=
3
a,
b=
c2-a2
=
3a2-a2
=
2
a,
由双曲线的渐近线方程为y=±
b
a
x,
即有y=±
2
x.
故选D.
点评:本题考查双曲线的方程和性质,考查离心率公式和渐近线方程的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,已知点M的极坐标是(2,θ),圆C的参数方程是
x=cost+1
y=sint
(t为参数),点M与圆C的位置关系是(  )
A、在圆内B、在圆上
C、在圆外D、在圆上或圆外

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
cosxsinx+cos2x+cos2x.
(I)求函数f(x)的最小正周期;
(II)在△ABC中,a,b,c分别是角A,B,C的对边,且锐角B满足f(B)=
1
2
,A=
π
4
,b=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2xtanθ-1,θ∈(-
π
2
π
2
).
(Ⅰ)若f(x)在x∈[-1,
3
]上为单调函数,求θ的取值范围;
(Ⅱ)若当θ∈[-
π
3
π
3
]时,y=f(x)在[-1,
3
]上的最小值为g(θ),求g(θ)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义域在(0,+∞)上的单调函数,且对于任意正数x,y有f(xy)=f(x)+f(y),已知f(2)=1.
(1)求f(
1
2
)的值;
(2)一个各项均为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1(n∈N*),其中Sn是数列{an}的前n项的和,求数列{an}的通项公式;
(3)在(2)的条件下,是否存在正数M,使
2n•a1•a2…an≥M
2n+1
(2a2-1)
-(2a2-1)…(2an-1)对一切n∈N*成立?若存在,求出M的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,若
AC
CB
>0,则
BA
AC
(  )
A、大于0B、等于0
C、小于0D、符号不定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,5),直线l:2x-3y-2=0,点M与点A关于l对称,
(1)求点M的坐标;
(2)若点B,C分别在直线l与y轴上运动,求△ABC周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
3
=1,那么它的焦点到渐近线的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(2x-1)+
1-x
的定义域为(  )
A、(
1
2
,1]
B、[
1
2
,1]
C、(-∞,1)
D、(
1
2
,+∞)

查看答案和解析>>

同步练习册答案