精英家教网 > 高中数学 > 题目详情

已知a、b为实数,且,其中e为自然对数的底,求证:

,∴要证,只要证

,则

,∴,且,∴

∴函数上是增函数.

,即


解析:

通过考察函数的单调性证明不等式也是常用的一种方法.根据题目自身的特点,适当的构造函数关系,在建立函数关系时,应尽可能选择求导和判断导数都比较容易的函数,一般地,证明,可以等价转化为证明,如果,则函数上是增函数,如果,由增函数的定义可知,当时,有,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b为实数,且ab≠0,则下列命题错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b为实数,且ab=1,设M=
a
a+1
+
b
b+1
,N=
1
a+1
+
1
b+1
,则M、N的大小系是(  )
A、M=NB、M>N
C、M<ND、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ab为实数,且bae,其中e为自然对数的底,

求证: abba.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高二上学期第三次阶段性测试理科数学卷 题型:选择题

已知a、b为实数,且a+b=2,则3a+3b的最小值为(      )

A.18             B.6             C.           D.2

 

查看答案和解析>>

同步练习册答案