【题目】已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1,x2∈[0,3],且x1≠x2时,都有 >0,给出下列命题:
① f(3)=0;
② 直线x=-6是函数y=f(x)的图象的一条对称轴;
③ 函数y=f(x)在[-9,-6]上为单调递减函数;
④ 函数y=f(x)在[-9,9]上有4个零点.
其中正确的命题是____________.(填序号)
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD—A1B1C1D1中,
M、N分别是AB1、BC1的中点.
(Ⅰ)求证:直线MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.
(1)求证:AP∥平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.
(Ⅰ)设函数,试求的伴随向量;
(Ⅱ)记向量的伴随函数为,求当且时的值;
(Ⅲ)由(Ⅰ)中函数的图像(纵坐标不变)横坐标伸长为原来的倍,再把整个图像向右平移个单位长度得到的图像。已知 ,问在的图像上是否存在一点,使得.若存在,求出点坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的离心率为,过左焦点作x轴的垂线交椭圆于A、B两点,且|AB|=1.
(1)求椭圆E的方程;
(2)设P、Q是椭圆E上两点,P在第一象限,Q在第二象限,且OP⊥OQ,其中O是坐标原点.
当P、Q运动时,是否存在定圆O,使得直线PQ都与定圆O相切?若存在,请求出圆O的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列的前项和为,,若且,数列的前项和为,且满足.
(Ⅰ)求数列的通项公式及数列的前项和;
(Ⅱ)是否存在非零实数,使得数列为等比数列?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com