精英家教网 > 高中数学 > 题目详情
11.如图是一个几何体的三视图,则这个几何体的体积是(  )
A.$\frac{7}{3}π$B.$\frac{10}{3}π$C.D.

分析 根据几何体的三视图,得出该几何体是两个全等的半圆锥的组合体,根据图中数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是两个全等的半圆锥的组合体,
且圆锥的底面半径为2,高为3,
所以该几何体的体积是
V=$\frac{1}{3}$•π•22•3=4π.
故选:C.

点评 本题考查了利用三视图求几何体的体积的应用问题,解题的关键是根据三视图还原出原图形,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知f(x)是定义在R上的函数,且对任意x∈R,满足f(x+4)-f(x)≤2x+3,f(x+20)-f(x)≥10x+95,且f(0)=0,则f(24)=138.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在某中学举行的环保知识竞赛中,随机抽取x名参赛同学的成绩(得分的整数)进行整理后分成五组,绘制出如图所示的频率分布直方图,已知图中从左到右的第一、第三、第四、第五小组的频率分别为0.30,0.15,0.10,0.05,第二小组的频数为40.
(1)求第二小组的频率,并补全这个频率分布直方图,画出频率分布折线图;
(2)若采用分层抽样的方法,从样本中随机取20人,则第三组和第四组各抽取多少人?
(3)在(2)的条件下,从第三组和第四组抽取的人中任选取2人,则她们不在同一组别的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某楼盘开展套餐促销优惠活动,优惠方案如下:选择套餐一的客户可获得优惠2万元,选择套餐二的客户可获得优惠5万元,选择套餐三的客户可获得优惠3万元.根据以往的统计结果绘出参与活动的统计图如图所示,现将频率视为概率.
(1)求某两客户选择同一套餐的概率;
(2)若用随机变量ξ表示某两客户所获优惠金额的总和,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=x•log2(x-2)+3的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3(x+2)(x-3)(x+4)+x的零点的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{{x}^{5}+sinx}{x}$的导数是$\frac{4{x}^{5}+cosx-sinx}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:$\root{3}{(\sqrt{\frac{1}{9}}-\sqrt{\frac{2}{9}})^{3}}$•(3$\sqrt{2}$+3)+$\frac{(\sqrt{3})^{4}-(\sqrt{2})^{4}}{(\sqrt{3}-\sqrt{2})^{0}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a-1-a=1,求$\frac{{a}^{2}+{a}^{-2}-2}{{a}^{4}-{a}^{-4}}$的值.

查看答案和解析>>

同步练习册答案