【题目】如图,在四棱锥中,⊥平面,底面为梯形,, ,,,为的中点.
(Ⅰ)证明:∥平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(1)见解析(2)
【解析】【试题分析】(I)取的中点,连接通过证明四边形为平行四边形,由此证得,进而证明平面.(II)以为坐标原点建立空间直角坐标系,通过计算平面的法向量与直线的方向向量来计算线面角的正弦值.
【试题解析】
(Ⅰ)证明:设F为PD的中点,连接EF,FA.
因为EF为的中位线,所以EF∥CD,且EF=.
又AB∥CD,AB=2,所以ABEF,故四边形ABEF为平行四边形,所以BE∥AF.
又 AF平面PAD,BE平面PAD,所以BE∥平面PAD
(Ⅱ)解:设G为AB的中点,因为AD=AB,,所以为等边三角形,故DG⊥AB ;因为AB∥CD,所以DG⊥DC;又PD平面ABCD,所以PD,DG,CD两两垂直
以D为坐标原点,为x轴、为轴、为轴建立空间直角坐标系,则,, ,,
设为平面DBE的一个法向量,则 ,即 ,
令,则
又 ,所以,
即直线PB与平面BDE所成角的正弦值为
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆:的离心率为,过左焦点且斜率为的直线交椭圆于两点,线段的中点为,直线:交椭圆于两点.
(1)求椭圆的方程;
(2)求证:点在直线上;
(3)是否存在实数,使得?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】屠呦呦,第一位获得诺贝尔科学奖项的中国本土科学家,在2015年获得诺贝尔生理学或医学奖,理由是她发现了青蒿素.这种药品可以有效降低疟疾患者的死亡率,从青篙中提取的青篙素抗疟性超强,几乎达到100%.据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(Ⅰ)写出服药一次后y与t之间的函数关系式;
(Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效,求服药一次后治疗有效的时间是多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中,),记函数的导函数为.
(Ⅰ)求函数的单调区间;
(Ⅱ)是否存在实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;
(Ⅱ)若曲线与曲线相交于,两点,且与轴相交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,平行于轴且过点的入射光线被直线反射,反射光线交轴于点,圆过点,且与、相切.
(Ⅰ)求所在直线的方程;
(Ⅱ)求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,根据经验,其次品率与日产量 (万件)之间满足关系, (其中为常数,且,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如表示每生产10件产品,有1件次品,其余为合格品).
(1)试将生产这种产品每天的盈利额 (万元)表示为日产量 (万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com