精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).

)求椭圆的方程;

)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.

【答案】(1)(2)对称.

【解析】

试题(Ⅰ)由已知条件推导出c=1,,由此能求出椭圆的方程.

(Ⅱ)由已知条件得A(-2,0),M(1,),设直线l: ,n≠1.设B(x1,y1),C(x2,y2),由,得x2+nx+n2﹣3=0.再由根的判别式和韦达定理结合已知条件能求出直线MB,MC关于直线m对称.

试题解析:

(Ⅰ)由题意得c=1,

可得a=2,

所以b2a2c2=3,

所以椭圆的方程为=1.

(Ⅱ)由题意可得点A(-2,0),M(1,),

所以由题意可设直线lyxnn≠1.

B(x1y1),C(x2y2),

x2nxn2-3=0.

由题意可得Δ=n2-4(n2-3)=12-3n2>0,n∈(-2,2)n≠1.

x1x2=-nx1x2n2-3

因为kMBkMC

=1+

=1+

=1-=0,

所以直线MBMC关于直线m对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆,定义椭圆C相关圆E:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.

1)求椭圆C及其相关圆E的方程;

2)过相关圆E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);

3)在(2)的条件下,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,对任意nN*都有an+1=an+n+1,则=(    )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,经过点的直线与椭圆相交于两点,点为线段的中点,点为坐标原点.当直线的斜率为时,直线的斜率为.

1)求椭圆的标准方程;

2)若点为椭圆的左顶点,点为椭圆的右顶点,过的动直线交该椭圆于两点,记的面积为的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A是以BC为直径的圆O上异于BC的动点,P为平面ABC外一点,且平面PBC⊥平面ABCBC=3,PB=2PC,则三棱锥PABC外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E的焦点重合,斜率为k的直线l交抛物线EAB两点,交椭圆CD两点.

(1)求椭圆的方程;

(2)直线l经过点,设点,且的面积为,求k的值;

(3)若直线l过点,设直线的斜率分别为,且成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.四棱柱的底面是直角梯形,,四边形均为正方形.

1)证明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分13分如图在直角坐标系的顶点是原点始边与轴正半轴重合终边交单位圆于点将角的终边按逆时针方向旋转交单位圆于点

1

2分别过轴的垂线垂足依次为的面积为的面积为求角的值

查看答案和解析>>

同步练习册答案