【题目】已知函数,
(Ⅰ)若曲线在处的导数等于,求实数;
(Ⅱ)若,求的极值;
(Ⅲ)当时,在上的最大值为,求在该区间上的最小值
【答案】(1).
(2)的极大值为,的极小值为.
(3).
【解析】分析:(1)首先对函数求导,将代入,从而求得,得到关于的等量关系式,从而求得结果;
(2)将代入函数解析式,对函数求导,列表确定出函数的单调区间,从而确定极值点,代入求得函数的极值;
(3)令,求得对应的根,得到函数的单调区间,从而求得函数在上的最大值点,代入求得的值,进一步求得函数在相应区间上的最小值.
详解:(Ⅰ)因为,曲线在 ,
依题意:.
(Ⅱ)当时,,
+ | - | + | ||||
单调增 | 单调减 | 单调增 |
所以,的极大值为,的极小值为.
(Ⅲ)令,得,
在上单调递增,在上单调递减,
当时,有, 所以在上的最小值为,
又,
所以在上的最大值为,解得:.
故在上的最小值为
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数y=sin(2x+)的图象向右平移个单位,再把所得图象上各点的横坐标缩短到原来的 , 则所得图象的函数解析式是( )
A.y=sin(4x+π)
B.y=sin(4x+)
C.y=sin4x
D.y=sinx
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其它成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).
(Ⅰ)求的函数关系式;
(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人,某教师采用、两种不同的教学模式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,该教师分别从两班中各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示,记成绩不低于90分为“成绩优秀”.
(1)在乙班的20个个体中,从不低于86分的成绩中随机抽取2人,求抽出的两个人均“成绩优秀”的概率;
(2)由以上统计数据填写列联表;能否在犯错误的概率不超过0.10的前提下认为成绩优秀与教学模型有关.
甲班() | 乙班() | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线-=1(a>0,b>0)的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A,B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从,,,,这五个数字中任取个组成无重复数字的三位数,当三个数字中有和时,需排在的前面(不一定相邻),这样的三位数有( )个.
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com