精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)若曲线处的导数等于,求实数

(Ⅱ),求的极值

(Ⅲ)当时,上的最大值为,求在该区间上的最小值

【答案】(1).

(2)的极大值为的极小值为.

(3).

【解析】分析:(1)首先对函数求导,将代入,从而求得得到关于的等量关系式,从而求得结果;

(2)将代入函数解析式,对函数求导,列表确定出函数的单调区间,从而确定极值点,代入求得函数的极值;

(3)求得对应的根,得到函数的单调区间,从而求得函数在上的最大值点,代入求得的值,进一步求得函数在相应区间上的最小值.

详解:(Ⅰ)因为,曲线

依题意:.

(Ⅱ)当时,

+

-

+

单调增

单调减

单调增

所以,的极大值为的极小值为.

(Ⅲ)令,得

上单调递增,在上单调递减,

时,有, 所以上的最小值为

所以上的最大值为,解得:.

上的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=sin(2x+)的图象向右平移个单位,再把所得图象上各点的横坐标缩短到原来的 , 则所得图象的函数解析式是(  )
A.y=sin(4x+π)
B.y=sin(4x+
C.y=sin4x
D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其它成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).

(Ⅰ)求的函数关系式;

(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设 是偶函数,求实数的值;

(2)求函数在区间上的值域

(3)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人,某教师采用两种不同的教学模式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,该教师分别从两班中各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示,记成绩不低于90分为“成绩优秀”.

(1)在乙班的20个个体中,从不低于86分的成绩中随机抽取2人,求抽出的两个人均“成绩优秀”的概率;

(2)由以上统计数据填写列联表;能否在犯错误的概率不超过0.10的前提下认为成绩优秀与教学模型有关.

甲班(

乙班(

总计

成绩优秀

成绩不优秀

总计

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.847

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线=1(a>0,b>0)的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于AB两点,F1为左焦点.

(1)求双曲线的方程;

(2)若△F1AB的面积等于6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】这五个数字中任取个组成无重复数字的三位数,当三个数字中有时,需排在的前面(不一定相邻),这样的三位数有( )个.

A. B. C. D.

查看答案和解析>>

同步练习册答案