精英家教网 > 高中数学 > 题目详情
函数f(x)=ax-b的图象如图所示,其中a、b为常数,则下列结论正确的是(    )

A.a>1,b<0                      B.a>1,b>0

C.0<a<1,b>0                   D.0<a<1,b<0

思路点拨:根据函数f(x)=ax-b的图象的单调性判断底数的范围,再与标准指数函数f(x)=ax的图象相比较在x轴方向上是向右移动了还是向左移动了来判断b的符号.

解:由图可知,y随x的增大而减小,

∴函数f(x)=ax-b是单调递减的.

∴0<a<1.又由于函数图象与y轴的交点在点(0,1)的下方,

即函数f(x)=ax-b的图象是由函数f(x)=ax的图象向左平移得到的.

∴-b>0.∴b<0.因此,选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
ax+2b
1+x2
是定义在(-1,1)上的奇函数,且f(1)=
1
2

(1)求函数f(x)的解析式;
(2)讨论函数f(x)的单调性;
(3)解不等式f(2-t)+f(
t
5
)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax,(x<0)
(a-3)x+4a,(x≥0)
满足对任意的实数x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的函数f(x)=
ax+b
1+x2
为奇函数,且f(
1
2
)=
2
5

(1)求实数a,b的值;
(2)用定义证明:函数f(x)在区间(-1,1)上是增函数;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax-1x+1
,  其中 a∈R

(1)当a=1时,求函数满足f(x)≤1时的x的集合;
(2)求a的取值范围,使f(x)在区间(0,+∞)上是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
a-1x
 (a∈R)
,g(x)=lnx.
(1)若对任意的实数a,函数f(x)与g(x)的图象在x=x0处的切线斜率总相等,求x0的值;
(2)若a>0,对任意x>0,不等式f(x)-g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案