【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.
(1)证明:AC⊥D1E;
(2)求DE与平面AD1E所成角的正弦值;
(3)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.
【答案】
(1)证明:连接BD
∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,
又AC平面ABCD,∴D1D⊥AC
在长方形ABCD中,AB=BC,∴BD⊥AC
又BD∩D1D=D,∴AC⊥平面BB1D1D,
而D1E平面BB1D1D,∴AC⊥D1E
(2)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),
∴
设平面AD1E的法向量为 ,则 ,即
令z=1,则
∴
∴DE与平面AD1E所成角的正弦值为
(3)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.
设P的坐标为(t,0,0)(0≤t≤1),则
∵BP∥平面AD1E
∴ ,即 ,
∴2(t﹣1)+1=0,解得 ,
∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长 .
【解析】(1)利用线面垂直的判定定理,证明AC⊥平面BB1D1D,即可得到AC⊥D1E;(2)建立空间直角坐标系,确定面AD1E的法向量,利用向量的夹角公式,即可求DE与平面AD1E所成角的正弦值;(3)利用BP∥平面AD1E,可得 ,利用向量的数量积公式,可得结论.
【考点精析】本题主要考查了直线与平面平行的判定和直线与平面垂直的性质的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;垂直于同一个平面的两条直线平行才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且对任意x1 , x2∈(0,+∞)都有 <0(x1≠x2),若实数a满足f(log3a﹣1)+2f( a)≥3f(1),则a的取值范围是( )
A.[ ,3]
B.[1,3]
C.(0, )
D.(0,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心在轴上的圆与直线切于点.
(1)求圆的标准方程;
(2)已知,经过原点,且斜率为正数的直线与圆交于两点.
(ⅰ)求证: 为定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海中一小岛的周围 内有暗礁,海轮由西向东航行至处测得小岛位于北偏东,航行8后,于处测得小岛在北偏东(如图所示).
(1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.
(2)如果有触礁的危险,这艘海轮在处改变航向为东偏南()方向航行,求的最小值.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为(1,1)的圆C经过点M(1,2).
(1)求圆C的方程;
(2)若直线x+y+m=0与圆C交于A、B两点,且△ABC是直角三角形,求实数m.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆C过点A(6,4),B(1,﹣1),且圆心在直线l:x﹣5y+7=0上.
(1)求圆C的方程;
(2)P为圆C上的任意一点,定点Q(7,0),求线段PQ中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=kax﹣a﹣x(a>0且a≠1)是定义域R上的奇函数.
(1)若f(1)>0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com