精英家教网 > 高中数学 > 题目详情
已知m,n∈R,则使不等式mn(m-n)<0成立的充要条件是(  )
分析:不等式mn(m-n)<0,等价于
m-n
mn
<0,等价于
1
n
1
m
,从而得出结论.
解答:解:不等式mn(m-n)<0,等价于 mn和(m-n)异号,等价于
m-n
mn
<0,等价于
1
n
1
m

故选C.
点评:本题主要考查充要条件的定义,实数运算的符号法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx

(1)当a=b=
1
2
时,求函数h(x)=f(x)-g(x)的单调区间;
(2)若b=2且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)当a≠0时,设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M,N,则是否存在点R,使C1在点M处的切线与C2在点N处的切线平行?如果存在,请求出R的横坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
12
)
|x-1|
,g(x)=x2-2ax+2,x∈[1,3],对于?m∈R,均能在区间[1,3]内找到两个不同的n,使f(m)=g(n),则实数a的值是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>

同步练习册答案