精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)对任意x∈R,恒有(f(x)-sinx)(f(x)-cosx)=0成立,则下列关于函数 y=f(x)的说法正确的是(  )
A、最小正周期是2π
B、值域是[-1,1]
C、是奇函数或是偶函数
D、以上都不对
考点:正弦函数的图象,余弦函数的图象
专题:三角函数的图像与性质
分析:因为f(x)=sinx,或f(x)=cosx,所以他不是周期函数,也不是奇函数或偶函数,故排除A、C;通过举反例可得B不对,从而得出结论.
解答: 解:由(f(x)-sinx)(f(x)-cosx)=0恒成立,可得f(x)=sinx,或f(x)=cosx,
故函数f(x)不是周期函数,也不是奇函数或偶函数,故排除A、C.
假设当x=kπ,k∈z时,f(x)=sinx;当x=kπ+
1
2
π,k∈z时,f(x)=cosx,
那么f(x)的值域就不是[-1,1],因为它永远不能取到±1,故选项B不对,
故选:D.
点评:本题主要考查正弦函数、余弦函数的图象及性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知PA、PB、PC是三棱锥P-ABC的三条棱,PA=PB=PC,且PA,PB,PC夹角都是60°,那么直线PC与平面PAB所成角的余弦值是(  )
A、
1
2
B、
2
2
C、
6
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,PD⊥平面ABCD,∠BAD=60°,Q为AD中点,AD=4,PD=6.
(Ⅰ)若点M在线段PC上,且PM=tPC(t>0),试确定实数t的值,使得PA∥平面MQB;
(Ⅱ)当三棱锥M-BQD的体积为2
3
时,试求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于△ABC,总满足:
CD
=sin2θ
CA
+cos2θ
CB
CD
AB
=
3
|AB|2,且
1
tan∠A
-
1
tan∠B
-
2
tan∠BDC
=1恒成立,则:
①△ABC一定是钝角三角形;②CA<CB;③?x∈R,θ=x;
④∠ADC的最小值小于30°;⑤CD可能是一条中线;⑥∠C的最大值小于30°.
上述对于△ABC的描述错误的是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若na=2,log3b=
1
e
,c3=
1
9
(其中e为自然对数的底数),则a、b、c的大小关系正确的是(  )
A、b>a>c
B、c>b>a
C、b>c>a
D、a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=an+n+2n(n∈N*),则an等于(  )
A、
n(n-1)
2
+2n-1-1
B、
n(n-1)
2
+2n-1
C、
n(n+1)
2
+2n+1-1
D、
n(n-1)
2
+2n+1-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在梯形中ABCD,AB∥CD,AB=2CD,M,N分别是CD,AB的中点,设
AB
=
e1
AD
=
e2

(1)在图上作出向量
1
2
e1
+
e2
(不要求写出作法)
(2)请将
MN
e1
e2
表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C中,AB⊥BC,AB=4,BC=6,AA1=8,有一只蚂蚁沿着三棱柱的表面从点A爬行到点C1,并且在棱BB1上的一点M稍作停顿,当蚂蚁爬行距离最短时,BM的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:f(x)=sin(
3
x+θ).

查看答案和解析>>

同步练习册答案