【题目】在某超市,随机调查了100名顾客购物时使用手机支付支付的情况,得到如下的列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(1)根据已知条件完成列联表,并根据此资料判断是否有99.9%的把握认为“超市购物用手机支付与年龄有关”.
(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 28 | ||
合计 | 100 |
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
【答案】(1)有;(2).
【解析】
分析:(1)根据已知条件完成列联表,求出,然后判断是否有的把握认为“超市购物用手机支付与年龄有关”.
(2)分层抽样从这100名顾客中采用分层抽样从“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本:使用手机支付的人有人,记编号为1,2,3,不使用手机支付的人有2人,记编号为,写出所有的情况,然后利用古典概型概率求解即可.
详解:
(1)从使用手机支付的人群中随机抽取1人,抽到青年的概率为
使用手机支付的人群中的青年的人数为人,
则使用手机支付的人群中的中老年的人数为人,所以列联表为:
青年 | 中老年 | 合计 | |
使用手机支付 | 48 | 12 | 60 |
不使用手机支付 | 12 | 28 | 40 |
合计 | 60 | 40 | 100 |
故有99.9%的把握认为“市场购物用手机支付与年龄有关”.
(2)这100名顾客中采用分层抽样从“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本中:
使用手机支付的人有人,
记编号为1,2,3
不使用手机支付的人有2人,记编号为,
则从这个样本中任选3人有
共10种
其中至少有2人是不使用手机支付的
共7种,
故所求概率为
科目:高中数学 来源: 题型:
【题目】已知函数的图象过点.
(1)求的值并求函数的值域;
(2)若关于的方程有实根,求实数的取值范围;
(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,有f(x)>0.
①求证:f( )=f(m)﹣f(n);
②求证:f(x)在(0,+∞)上是增函数;
③比较f( )与 的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()
(1)若在区间[0,1]上有最大值1和最小值-2.求a,b的值;
(2)在(1)条件下,若在区间上,不等式f(x) 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2|+|2x+a|,a∈R.
(1)当a=1时,解不等式f(x)≥5;
(2)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
支持 | 不支持 | 合计 | |
男性市民 | |||
女性市民 | |||
合计 |
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年3月山东省高考改革实施方案发布:2020年夏季高考开始全省高考考生总成绩将由语文、数学、外语三门统一高考成绩和学生自主选择的普通高中学业水平等级性考试科目的成绩共同构成.省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.右面是根据样本的调查结果绘制的等高条形图.
(Ⅰ)请根据已知条件与等高条形图完成下面的列联表:
赞成 | 不赞成 | 合计 | |
城镇居民 | |||
农村居民 | |||
合计 |
(Ⅱ)试判断我们是否有95%的把握认为“赞成高考改革方案与城乡户口有关”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com