ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[0£¬1]£¬ÇÒͬʱÂú×㣺¢Ùf£¨1£©=3£»¢Úf£¨x£©¡Ý2¶ÔÒ»ÇÐx¡Ê[0£¬1]ºã³ÉÁ¢£»¢ÛÈôx1¡Ý0£¬x2¡Ý0£¬x1+x2¡Ü1£¬ÔòÓÐf£¨x1+x2£©¡Ýf£¨x1£©+f£¨x2£©-2
£¨1£©Çóf£¨0£©µÄÖµ
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬ÇóÖ¤£ºf£¨s£©¡Üf£¨t£©
£¨3£©ÊԱȽÏf(
1
2n
)
Óë
1
2n
+2
£¨n¡ÊN£©µÄ´óС£»
£¨4£©Ä³Í¬Ñ§·¢ÏÖ£¬µ±x=
1
2n
£¨n¡ÊN£©Ê±£¬ÓÐf£¨x£©£¼2x+2£¬ÓÉ´ËËûÌá³ö²ÂÏ룺¶ÔÒ»ÇÐx¡Ê£¨0£¬1]£¬¶¼ÓÐf£¨x£©£¼2x+2£¬ÇëÄãÅжϴ˲ÂÏëÊÇ·ñÕýÈ·£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉ¢Û£¬Áîx1=x2=0£¬½áºÏf£¨0£©¡Ý2¿ÉÇóf£¨0£©µÄÖµ
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬Ôòt-s¡Ê[0£¬1]£®´Ó¶øf£¨t£©=f[£¨t-s£©+s]¡Ýf£¨t-s£©+f£¨s£©-2£¬¹Êf£¨t£©-f£¨s£©¡Ýf£¨t-s£©-2¡Ý0£®¿ÉµÃf£¨t£©¡Ýf£¨s£©£®
£¨3£©ÌâÖÐÌõ¼þ£ºf£¨x1+x2£©¡Ýf£¨x1£©+f£¨x2£©-2£¬Áîx1=x2=
1
2n
£¬µÃ f(
1
2n-1
)¡Ý2f(
1
2n
)-2
£¬ÀûÓÃËü½øÐзÅËõ£¬¿ÉÖ¤µÃ´ð°¸£¬
£¨4£©ÒòΪÓÉÌâÒâ¿ÉµÃ£º¶Ôx¡Ê[0£¬1]£¬×Ü´æÔÚn¡ÊN£¬Âú×ã
1
2n+1
£¼x¡Ü
1
2n
£®½áºÏ£¨I£©¡¢£¨II£©¿ÉÖ¤µÃ£¨III£©£®
½â´ð£º½â£º£¨1£©ÓÉ¢Û£¬Áîx1=x2=0£¬f£¨0£©¡Ýf£¨0£©+f£¨0£©-2£¬¡àf£¨0£©¡Ü2
ÓÖf£¨0£©¡Ý2£¬Ôòf£¨0£©=2£»
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬Ôòt-s¡Ê[0£¬1]£®
¡àf£¨t£©=f[£¨t-s£©+s]¡Ýf£¨t-s£©+f£¨s£©-2£®
¡àf£¨t£©-f£¨s£©¡Ýf£¨t-s£©-2¡Ý0£®¡àf£¨t£©¡Ýf£¨s£©£®
£¨3£©ÔÚ¢ÛÖУ¬Áîx1=x2=
1
2n
£¬µÃ f(
1
2n-1
)¡Ý2f(
1
2n
)-2
£¨8·Ö£©
¡àf(
1
2n
)-2¡Ü
1
2
[f(
1
2n-1
)-2]¡Ü
1
22
[f(
1
2n-2
)-2]¡Ü
1
2n
[f(
1
2n-n
)-2]=
1
2n

Ôò f(
1
2n
)¡Ü
1
2n
+2
£® £¨11·Ö£©
£¨¢ó£©¶Ôx¡Ê[0£¬1]£¬×Ü´æÔÚn¡ÊN£¬Âú×ã
1
2n+1
£¼x¡Ü
1
2n
£® £¨13·Ö£©
ÓÉ£¨¢ñ£©Ó루¢ò£©£¬µÃ f(x)¡Üf(
1
2n
)¡Ü
1
2n
+2
£¬ÓÖ2x+2£¾2•
1
2n+1
+2=
1
2n
+2£®
¡àf£¨x£©£¼x+2£®
×ÛÉÏËùÊö£¬¶ÔÈÎÒâx¡Ê[0£¬1]£®f£¨x£©£¼x+2ºã³ÉÁ¢£® £¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÁ˳éÏóº¯Êý£¬³éÏóº¯ÊýÊÇÏà¶ÔÓÚ¸ø³ö¾ßÌå½âÎöʽµÄº¯ÊýÀ´ËµµÄ£¬ËüËäȻûÓоßÌåµÄ±í´ïʽ£¬µ«ÊÇÓÐÒ»¶¨µÄ¶ÔÓ¦·¨Ôò£¬Âú×ãÒ»¶¨µÄÐÔÖÊ£¬ÕâÖÖ¶ÔÓ¦·¨Ôò¼°º¯ÊýµÄÏàÓ¦µÄÐÔÖÊÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®³éÏóº¯ÊýµÄ³éÏóÐÔ¸³ÓèËü·á¸»µÄÄÚº­ºÍ¶à±äµÄ˼ά¼ÛÖµ£¬¿ÉÒÔ¿¼²éÀà±È²Â²â£¬ºÏÇéÍÆÀíµÄ̽¾¿ÄÜÁ¦ºÍ´´Ð¾«Éñ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=log3
3
x
1-x
£¬M(x1£¬y1)£¬N(x2£¬y2)
ÊÇf£¨x£©Í¼ÏóÉϵÄÁ½µã£¬ºá×ø±êΪ
1
2
µÄµãPÂú×ã2
OP
=
OM
+
ON
£¨OΪ×ø±êÔ­µã£©£®
£¨¢ñ£©ÇóÖ¤£ºy1+y2Ϊ¶¨Öµ£»
£¨¢ò£©ÈôSn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£»
£¨¢ó£©ÒÑÖªan=
1
6
£¬                          n=1
1
4(Sn+1)(Sn+1+1)
£¬n¡Ý2
£¬ÆäÖÐn¡ÊN*£¬TnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôTn£¼m£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐ˵·¨ÕýÈ·µÄÓУ¨¡¡¡¡£©¸ö£®
¢ÙÒÑÖªº¯Êýf£¨x£©ÔÚ£¨a£¬b£©Äڿɵ¼£¬Èôf£¨x£©ÔÚ£¨a£¬b£©ÄÚµ¥µ÷µÝÔö£¬Ôò¶ÔÈÎÒâµÄ?x¡Ê£¨a£¬b£©£¬ÓÐf¡ä£¨x£©£¾0£®
¢Úº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£¬Ôòº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£»·´Ö®Èôº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£¬Ôòº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£®
¢ÛÒòΪ3£¾2£¬ËùÒÔ3+i£¾2+i£¬ÆäÖÐiΪÐéÊýµ¥Î»£®
¢Ü¶¨»ý·Ö¶¨Òå¿ÉÒÔ·ÖΪ£º·Ö¸î¡¢½üËÆ´úÌæ¡¢ÇóºÍ¡¢È¡¼«ÏÞËIJ½£¬¶ÔÇóºÍIn=
n
i=1
f(¦Îi)¡÷x
ÖЦÎiµÄÑ¡È¡ÊÇÈÎÒâµÄ£¬ÇÒIn½öÓÚnÓйأ®
¢ÝÒÑÖª2i-3ÊÇ·½³Ì2x2+px+q=0µÄÒ»¸ö¸ù£¬ÔòʵÊýp£¬qµÄÖµ·Ö±ðÊÇ12£¬26£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sin£¨2x-
¦Ð
6
£©£¬g£¨x£©=sin£¨2x+
¦Ð
3
£©£¬Ö±Ïßy=mÓëÁ½¸öÏàÁÚº¯ÊýµÄ½»µãΪA£¬B£¬Èôm±ä»¯Ê±£¬ABµÄ³¤¶ÈÊÇÒ»¸ö¶¨Öµ£¬ÔòABµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¢ñ£©ÒÑÖªº¯Êýf£¨x£©=x3-x£¬ÆäͼÏó¼ÇΪÇúÏßC£®
£¨i£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨ii£©Ö¤Ã÷£ºÈô¶ÔÓÚÈÎÒâ·ÇÁãʵÊýx1£¬ÇúÏßCÓëÆäÔÚµãP1£¨x1£¬f£¨x1£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP2£¨x2£¬f£¨x2£©£©£¬ÇúÏßCÓëÆäÔÚµãP2£¨x2£¬f£¨x2£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP3£¨x3£¬f£¨x3£©£©£¬Ï߶ÎP1P2£¬P2P3ÓëÇúÏßCËùΧ³É·â±ÕͼÐεÄÃæ»ý¼ÇΪS1£¬S2£®Ôò
S1S2
Ϊ¶¨Öµ£»
£¨¢ò£©¶ÔÓÚÒ»°ãµÄÈý´Îº¯Êýg£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬Çë¸ø³öÀàËÆÓÚ£¨¢ñ£©£¨ii£©µÄÕýÈ·ÃüÌ⣬²¢ÓèÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3-ax+b´æÔÚ¼«Öµµã£®
£¨1£©ÇóaµÄÈ¡Öµ·¶Î§£»
£¨2£©¹ýÇúÏßy=f£¨x£©ÍâµÄµãP£¨1£¬0£©×÷ÇúÏßy=f£¨x£©µÄÇÐÏߣ¬Ëù×÷ÇÐÏßÇ¡ÓÐÁ½Ìõ£¬Çеã·Ö±ðΪA¡¢B£®
£¨¢¡£©Ö¤Ã÷£ºa=b£»
£¨¢¢£©ÇëÎÊ¡÷PABµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó´Ë¶¨Öµ£»Èô²»ÊÇÇó³öÃæ»ýµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸