【题目】设函数f(x)=﹣2x , g(x)=lg(ax2﹣2x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为( )
A.(﹣1,0)
B.(0,1)
C.(﹣∞,1]
D.[1,+∞)
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, , 平面, .
(1)设点为的中点,求证: 平面;
(2)线段上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinωx+λcosωx,其图象的一个对称中心到最近的一条对称轴的距离为 ,且在x= 处取得最大值.
(1)求λ的值.
(2)设 在区间 上是增函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为,求的分布列及数学期望..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.
(1)求圆的直角坐标方程;
(2)设圆与直线交于点,若点的坐标为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A则实数b的取值范围是( )
A.b≠0
B.b<0或b≥4
C.0≤b<4
D.b≤4或b≥4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中, 平面,底面是菱形, , , . 为与的交点, 为棱上一点,
(1)证明:平面⊥平面;
(2)若三棱锥的体积为,
求证: ∥平面.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com