精英家教网 > 高中数学 > 题目详情
已知f(x)=2x3+ax2+b-1是奇函数,则a-b=
-1
-1
分析:利用奇函数的性质即可得出.
解答:解:∵f(x)是R上的奇函数,∴f(0)=0,得b-1=0,解得b=1.
∴f(x)=2x3+ax2
又∵f(-x)+f(x)=0,∴-2x3+ax2+2x3+ax2=0,化为ax2=0,对于任意实数R都成立.
∴a=0.
∴a-b=-1.
故答案为-1.
点评:熟练掌握奇函数的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知f(x)=2x3-6x+m(m为常数),在[0,2]上有最大值3,那么此函数在[0,2]上的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3+ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有公共切线,求f(x),g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-2x3+6x2+m(m为常数)在[-2,2]上有最小值3,那么此函数在[-2,2]上的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3-6x2+a(a为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的值域是(  )

查看答案和解析>>

同步练习册答案