精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥的底面是正方形,底面.

(1)求证:直线平面

(2)当的值为多少时,二面角的大小为

【答案】(1)证明见解析;(2)1.

【解析】分析(1)由线面垂直的性质可得,由正方形的性质可得,由线面垂直的判定定理可证平面;(2)设,以为原点,所在直线分别为轴建立空间直角坐标系,设,分别利用向量垂直数量积为零列方程组,求出平面的法向量与平面的法向量,由空间向量夹角余弦公式列方程可得结果.

详解(1)证明:∵平面平面,∴

∵四边形是正方形,∴,∴平面.

(2)解:设,以为原点,所在直线分别为轴建立空间直角坐标系,为计算方便,不妨设,则

.

设平面的法向量为,则

,则,∴.

设平面的法向量为

,又,则,∴.

要使二面角的大小为,必有

,∴,∴.

即当时,二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学用收集到的6组数据对制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线的方程:,相关系数为,相关指数为;经过残差分析确定点为“离群点”(对应残差过大的点),把它去掉后,再用剩下的5组数据计算得到回归直线的方程:,相关系数为,相关指数为.则以下结论中,不正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为梯形,平面,

中点.

(1)求证:平面平面

(2)线段上是否存在一点,使平面?若存在,找出具体位置,并进行证明:若不存在,请分析说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是抛物线的准线直线与抛物线没有公共点动点在抛物线到直线的距离之和的最小值等于2.

求抛物线的方程

在直线上运动过点做抛物线的两条切线切点分别为在平面内是否存在定点使得恒成立若存在请求出定点的坐标若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某市日至日的空气质量指数趋势图,某人随机选择日至日中的某一天到达该市,并停留天.

(1)求此人到达当日空气质量指数大于的概率;

(2)设是此人停留期间空气质量指数小于的天数,求的分布列与数学期望;

(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax2
(1)讨论f(x)的单调性;
(2)设a>1,若对任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDABCD的棱长为a,连接ACADABBDBCCD,得到一个三棱锥.求:

(1)三棱锥ABCD的表面积与正方体表面积的比值;

(2)三棱锥ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张坐标纸上已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为曲线.

(1)求曲线的方程;

(2)若直线与轨迹交于两点,且直线与以为直径的圆相切,若,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线过点,其参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线相交于两点,求的值.

查看答案和解析>>

同步练习册答案