【题目】一个袋中有个大小之地都相同的小球,其中红球个,白球个,黑球个,现从袋中有放回的取球,每次随机取一个,连续取两次.
(1)设表示先后两次所取到的球,试写出所有可能抽取结果;
(2)求连续两次都取到白球的概率;
(3)若取到红球记分,取到白球记分,取到黑球记分,求连续两次球所得总分数大于分的概率.
【答案】(1)见解析;(2);(3).
【解析】
(1)根据题意列举出所有可能抽取的结果即可;
(2)设事件连续取两次都是白球,列举出事件所包含的基本事件,然后利用古典概型的概率公式可求出事件的概率;
(3)设事件连续两次分数之和为,设事件连续两次得分之和为分,利用古典概型的概率公式求出、,相加即可得出结果.
(1)连续取两次所包含的基本事件有:(红,红)、(红,白)、(红,白)、(红、黑)、(白,红)、(白,白)、(白,白)、(白,黑)、(白,红)、(白,白)、(白,白)、(白,黑)、(黑,红)、(黑,白)、(黑,白)、(黑,黑),
所以,基本事件的总数为;
(2)设事件连续取两次都是白球,则事件所包含的基本事件有:(白,白)、(白,白)、白,白)、(白,白),共个,
所以,;
(3)设事件连续两次分数之和为,设事件连续两次得分之和为分,
设事件连续两次分数之和大于,
则事件包含的基本事件有:(红,白)、(红,白)、(白,红)、(白,红),共个,
事件所包含的基本事件有:(红,红),共个,
,,因此,.
科目:高中数学 来源: 题型:
【题目】某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.
(1)求出,,,并猜测的表达式;
(2)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某海滨浴场海浪的高度(米是时刻,单位:时)的函数,记作:,下表是某日各时刻的浪高数据:
时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
经长期观测,的曲线可近似地看成是函数,,的图象.
(
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的至之间,那个时间段不对冲浪爱好者开放?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人工智能的兴起,越来越多的事物可以用机器人替代,某学校科技小组自制了一个机器人小青,共可以解决函数、解析几何、立体几何三种题型已知一套试卷共有该三种题型题目20道,小青解决一个函数题需要6分钟,解决一个解析几何题需要3分钟,解决一个立体几何题需要9分钟已知小青一次开机工作时间不能超过90分钟,若答对一道函数题给8分,答对一道解析几何题给6分,答对一道立体几何题给9分该兴趣小组通过合理分配题目可使小青在一次开机工作时间内做这套试卷得分最高,则最高得分为______分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内的定点到定直线的距离等于,动圆过点且与直线相切,记圆心的轨迹为曲线.在曲线上任取一点,过作的垂线,垂足为.
(1)求曲线的轨迹方程;
(2)记点到直线的距离为,且,求的取值范围;
(3)判断的平分线所在的直线与曲线的交点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中, , , ,则阳马的外接球的表面积是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com