【题目】长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,高为4,则顶点A1到截面AB1D1的距离为 .
【答案】
【解析】解:如图,设A1C1∩B1D1=O1 , ∵B1D1⊥A1O1 , B1D1⊥AA1 , ∴B1D1⊥平面AA1O1 ,
∴平面AA1O1⊥面AB1D1 , 交线为AO1 ,
在面AA1O1内过A1作A1H⊥AO1于H,连接A1H,则A1H的长即是点A1到截面AB1D1的距离,
在Rt△A1O1A中,A1O1= ,AO1=3 ,
由A1O1A1A=hAO1 , 可得A1H=
故答案为:
分析:设A1C1∩B1D1=O1 , 根据线面垂直的判定定理可知B1D1⊥平面AA1O1 , 再根据面面垂直的判定定理可知故平面AA1O1⊥面AB1D1 , 交线为AO1 , 在面AA1O1内过A1作A1H⊥AO1于H,则A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,利用等面积法求出A1H即可.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ ax2﹣2x(a<0)
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若a=﹣ 且关于x的方程f(x)=﹣ x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法中错误的是( )
A.若p或q为假命题,则p、q均为假命题.
B.“x=1”是“x2﹣3x+2=0”的充分不必要条件.
C.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”.
D.对于命题p:存在x∈R使得x2+x+1<0,则非p:存在x∈R,使x2+x+1≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , (Ⅰ)求函数f(x)的单调区间,并判断是否有极值;
(Ⅱ)若对任意的x>1,恒有ln(x﹣1)+k+1≤kx成立,求k的取值范围;
(Ⅲ)证明: (n∈N+ , n≥2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:
天数x(天) | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
日经济收入Q(万元) | 154 | 180 | 198 | 208 | 210 | 204 | 190 |
(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明. ①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在雅安发生地震灾害之后,救灾指挥部决定建造一批简易房,供灾区群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.
(1)设房前面墙的长为x,两侧墙的长为y,一套简易房所用材料费为p,试用x,y表示p;
(2)一套简易房面积S的最大值是多少?当S最大时,前面墙的长度是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A,B,C的对边分别是a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B.
(2)若 ,△ABC的周长为 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com