精英家教网 > 高中数学 > 题目详情
已知函数f(x)=m•2x+t的图象经过点A(1,1),B(2,3),及C(n,Sn),Sn为数列{an}的前n项的和,n∈N*
(1)求Sn及an
(2)设bn=log2an-1,数列{bn}的前n项和为Tn,求证:
1
T4
+
1
T5
+…+
1
Tn
11
9
(n≥4,n∈N*)
分析:(1)由2m+t=1得t=-1,4m+t=3m=1,所以f(x)=2x-1,Sn=2n-1n∈N*,所以an=2n-1(n∈N*).
(2)因为bn=log2an-1=n-2,所以Tn=
(n-2-1)n
2
=
n(n-3)
2
,所以,
1
Tn
=
2
n(n-3)
=
2
3
(
1
n-3
-
1
n
)
,由此能够证明
1
T4
+
1
T5
+…+
1
Tn
11
9
(n≥4,n∈N*)
解答:解:(1)由2m+t=1得t=-1
4m+t=3m=1(2分)
所以f(x)=2x-1则Sn=2n-1n∈N*(4分)
当n≥2时,an=Sn-Sn-1=2n-1
当n=1时,a1=S1=1满足上式,所以an=2n-1(n∈N*)(6分)
(2)证明:因为bn=log2an-1=n-2
所以Tn=
(n-2-1)n
2
=
n(n-3)
2
(8分)
所以,当n≥4时,
1
Tn
=
2
n(n-3)
=
2
3
(
1
n-3
-
1
n
)
(10分)
所以
1
T4
+
1
T5
++
1
Tn
=
2
3
(1-
1
4
)+
2
3
(
1
2
-
1
5
)+
2
3
(
1
3
-
1
6
)+

+
2
3
(
1
n-3
-
1
n
)=
2
3
(1+
1
2
+
1
3
-
1
n-2
-
1
n-1
-
1
n
)<
11
9
(13分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案