精英家教网 > 高中数学 > 题目详情

【题目】某礼品店要制作一批长方体包装盒,材料是边长为的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是的正方形,然后在余下两个角处各切去一个长、宽分别为的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.

(1)求包装盒的容积关于的函数表达式,并求函数的定义域;

(2)为多少时,包装盒的容积最大?最大容积是多少?

【答案】1 ,函数的定义域为.(2切去的正方形边长时,包装盒的容积最大,最大容积是

【解析】试题分析:(1)先用x表示长宽高,再根据长方体体积公式列函数解析式,最后根据实际意义确定定义域(2)求导数,再求导函数零点,列表分析导函数符号变化规律,确定单调性,最后根据单调性确定函数最值

试题解析:(1)因为包装盒高,底面矩形的长为,宽为

所以铁皮箱的体积

函数的定义域为

(2)由(1)得

解得

时, ,函数单调递增;

时, ,函数单调递减.

所以函数处取得极大值,这个极大值就是函数的最大值.

答:切去的正方形边长时,包装盒的容积最大,最大容积是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆内切并且与圆外切,圆心的轨迹为曲线.

(Ⅰ)求的方程;

(Ⅱ)已知曲线轴交于两点,过动点的直线与交于 (不垂直轴),过作直线交于点且交轴于点,若构成以为顶点的等腰三角形,证明:直线 的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线yx+ln x在点(1,1)处的切线与曲线yax2+(a+2)x+1相切,则a________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题恒成立;命题方程表示双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直, , ,点是线段的中点.

(1)求证:

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:

网购金额

(单位:千元)

频数

频率

3

9

15

18

合计

60

若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为.

(1)确定的值,并补全频率分布直方图;

(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以为组距分成组: ,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

定义学生对餐厅评价的“满意度指数”如下:

分数

满意度指数

(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为的人数;

(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;

(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一牧羊人赶着一群羊通过4个关口,每过一个关口,守关人将拿走当时羊的一半,然后退还一只给牧羊人,过完这些关口后,牧羊人只剩下3只羊,则牧羊人在过第1个关口前有_________只羊.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cos(75°+α)=α是第三象限角,

(1)求sin(75°+α) 的值.

(2)求cos(α-15°) 的值.

(3)求sin(195°-α)+cos(105oα)的值.

查看答案和解析>>

同步练习册答案